

IB
M

IBM Visualization Data Explorer

User’s Reference

Version 3 Release 1 Modification 4

SC38-0486-03

IBM IBM Visualization Data Explorer

User’s Reference

Version 3 Release 1 Modification 4

SC38-0486-03

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page xi.

Fourth Edition (May 1997)

This edition applies to IBM Visualization Data Explorer Version 3.1.4, to IBM Visualization Data Explorer SMP Version 3.1.4, and to
all subsequent releases and modifications thereof until otherwise indicated in new editions. Make sure you are using the correct
edition for the level of the product. Order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address given below.

A form for readers’ comments appears at the back of this publication. If the form has been removed, address your comments to:

 IBM Corporation
Thomas J. Watson Research Center/Hawthorne
Data Explorer Development
P.O. Box 704
Yorktown Heights, NY 10598-0704

 USA

If you send information to IBM, you grant IBM a nonexclusive right to use or distribute that information, in any way it believes
appropriate, without incurring any obligation to you.

 Copyright International Business Machines Corporation 1991-1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Figures . vii

Tables . ix

Notices . xi
Products, Programs, and Services . xii
Trademarks and Service Marks . xii
Copyright notices . xiii

About This Reference . xix
Typographic Conventions . xx
Related Publications and Sources . xx

IBM Publications . xx
Non-IBM Publications . xx
Other sources of information . xxi

Chapter 1. Data Explorer Tools . 1
1.1 Tool Categories . 3

Annotation . 3
DXLink . 4
Debugging . 4
Flow Control . 4
Import and Export . 5
Interactor . 6
Interface Control . 7
Realization . 7
Rendering . 8
Special . 10
Structuring . 11
Transformation . 12
Windows . 13

Chapter 2. Functional Modules . 15
AmbientLight . 20
Append . 22
Arrange . 24
Attribute . 26
AutoAxes . 27
AutoCamera . 31
AutoColor . 34
AutoGlyph . 37
AutoGrayScale . 42
AutoGrid . 45
Band . 47
Camera . 49
Caption . 52
Categorize . 55
CategoryStatistics . 57
ChangeGroupMember . 59
ChangeGroupType . 61

 Copyright IBM Corp. 1991-1997 iii

ClipBox . 63
ClipPlane . 65
Collect . 67
CollectMultiGrid . 69
CollectNamed . 71
CollectSeries . 73
Color . 75
ColorBar . 81
Colormap . 84
Compute . 86
Compute2 . 92
Connect . 94
Construct . 96
Convert . 98
CopyContainer . 100
DFT . 101
DXLInput . 102
DXLInputNamed . 104
DXLOutput . 106
Describe . 107
Direction . 108
Display . 109
DivCurl . 118
Done . 119
Echo . 120
Enumerate . 121
Equalize . 123
Execute . 125
Executive . 126
Export . 129
Extract . 131
FFT . 132
FaceNormals . 134
FileSelector . 136
Filter . 137
First . 141
ForEachMember . 142
ForEachN . 144
Format . 146
GetGlobal . 149
GetLocal . 151
Glyph . 153
Gradient . 155
Grid . 156
Histogram . 158
Image . 160
Import . 165
ImportSpreadsheet . 170
Include . 173
Input . 177
Inquire . 178
Integer . 184
IntegerList . 186
Isolate . 189

iv IBM Visualization Data Explorer: User’s Reference

Isosurface . 190
KeyIn . 193
Legend . 194
Light . 197
List . 199
Lookup . 201
ManageColormapEditor . 203
ManageControlPanel . 205
ManageImageWindow . 206
ManageSequencer . 208
Map . 209
MapToPlane . 212
Mark . 214
Measure . 216
Message . 219
Morph . 220
Normals . 222
Options . 224
Output . 227
Overlay . 228
Parse . 230
Partition . 232
Pick . 234
Plot . 237
Post . 242
Print . 244
Probe . 246
ProbeList . 247
QuantizeImage . 248
ReadImage . 250
ReadImageWindow . 253
Receiver . 254
Reduce . 256
Refine . 258
Regrid . 260
Remove . 262
Rename . 263
Render . 264
Reorient . 266
Replace . 268
Reset . 270
Ribbon . 271
Rotate . 273
Route . 275
RubberSheet . 277
Sample . 280
Scalar . 282
ScalarList . 285
Scale . 288
ScaleScreen . 289
Select . 291
Selector . 293
SelectorList . 295
Sequencer . 297

 Contents v

SetGlobal . 299
SetLocal . 300
Shade . 301
ShowBoundary . 303
ShowBox . 305
ShowConnections . 307
ShowPositions . 309
SimplifySurface . 311
Slab . 315
Slice . 317
Sort . 319
Stack . 320
Statistics . 322
Streakline . 323
Streamline . 327
String . 330
StringList . 331
SuperviseState . 332
SuperviseWindow . 336
Switch . 340
System . 342
Text . 343
Toggle . 345
Trace . 347
Transform . 349
Translate . 351
Transmitter . 352
Transpose . 354
Tube . 356
Unmark . 358
UpdateCamera . 360
Usage . 362
Value . 364
ValueList . 365
Vector . 366
VectorList . 369
Verify . 372
VisualObject . 373
WriteImage . 374

Glossary . 379

Index . 383

vi IBM Visualization Data Explorer: User’s Reference

 Figures

1. Position-dependent colormaps . 77
2. Connection-dependent colormaps . 78
3. Mapping from one field to another . 210
4. Reorientation of the letter F. 267

 Copyright IBM Corp. 1991-1997 vii

viii IBM Visualization Data Explorer: User’s Reference

 Tables

1. Operators for the Compute Module . 87
2. Filter Names . 139
3. Inquiries about objects . 179
4. Inquiries about particular types of objects 181
5. Inquiries that take a value parameter . 183
6. Miscellaneous Inquiries . 183
7. Options for Measure's What Parameter 217
8. Attributes which have predefined meanings in Data Explorer 225
9. Format Characteristics for WriteImage 375

 Copyright IBM Corp. 1991-1997 ix

x IBM Visualization Data Explorer: User’s Reference

 Notices

Products, Programs, and Services . xii
Trademarks and Service Marks . xii
Copyright notices . xiii

 Copyright IBM Corp. 1991-1997 xi

Products, Programs, and Services
References in this publication to IBM* products, programs, or services do not imply
that IBM intends to make these available in all countries in which it operates. Any
reference to an IBM product, program, or service is not intended to state or imply
that only IBM’s product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM’s
intellectual property rights may be used instead. Evaluation and verification of
operation in conjunction with other products, except those expressly designated by
IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give the user any license
to those patents. License inquiries should be sent, in writing, to:

International Business Machines Corporation
IBM Director of Licensing
500 Columbus Avenue
Thornwood, New York 10594
USA

Trademarks and Service Marks
The following terms, marked by an asterisk (*) at their first occurrence in this
publication, are trademarks or registered trademarks of the IBM Corporation in the
United States and/or other countries.

AIX
IBM
IBM Power Visualization System
RISC System/6000
Visualization Data Explorer

The following terms, marked by a double asterisk (**) at their first occurrence in this
publication, are trademarks of other companies.

AViiON Data General Corporation
DEC Digital Equipment Corporation
DGC Data General Corporation
Graphics Interchange Format (GIF) CompuServe, Inc.
Hewlett-Packard Hewlett-Packard Company
HP Hewlett-Packard Company
iFOR/LS Apollo Computer, Inc.
Motif Open Software Foundation
NetLS Apollo Computer, Inc.
Network Licensing Software Apollo Computer, Inc.
OpenWindows Sun Microsystems, Inc.
OSF Open Software Foundation, Inc.
PostScript Adobe Systems, Inc.
X Window System Massachusetts Institute of Technology

xii IBM Visualization Data Explorer: User’s Reference

 Copyright notices
IBM Visualization Data Explorer contains software copyrighted as follows:

� E. I. du Pont de Nemours and Company

 Copyright 1997 E. I. du Pont de Nemours and Company

Permission to use, copy, modify, distribute, and sell this software and its
documentation for any purpose is hereby granted without fee, provided that the
above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the
name of E. I. du Pont de Nemours and Company not be used in advertising or
publicity pertaining to distribution of the software without specific, written prior
permission. E. I. du Pont de Nemours and Company makes no representations
about the suitability of this software for any purpose. It is provided “as is”
without express or implied warranty.

E. I. du Pont de Nemours and Company disclaims all warranties with regard to
this software, including all implied warranties of merchantability and fitness, in
no event shall E. I. du Pont de Nemours and Company be liable for any
special, indirect or consequential damages or any damages whatsoever
resulting from loss of use, data or profits, whether in an action of contract,
negligence or other tortious action, arising out of or in connection with the use
or performance of this software.

� National Space Science Data Center

 Copyright 1990-1994 NASA/GSFC

National Space Science Data Center
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771 USA
(NSI/DECnet -- NSSDCA::CDFSUPPORT)
(Internet -- CDFSUPPORT@NSSDCA.GSFC.NASA.GOV)

� University Corporation for Atmospheric Research/Unidata

 Copyright 1993, University Corporation for Atmospheric Research

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose without fee is hereby granted, provided that the
above copyright notice appear in all copies, that both that copyright notice and
this permission notice appear in supporting documentation, and that the name
of UCAR/Unidata not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission. UCAR
makes no representations about the suitability of this software for any purpose.
It is provided “as is” without express or implied warranty. It is provided with no
support and without obligation on the part of UCAR Unidata, to assist in its use,
correction, modification, or enhancement.

 � NCSA

NCSA HDF version 3.2r4
March 1, 1993

NCSA HDF Version 3.2 source code and documentation are in the public
domain. Specifically, we give to the public domain all rights for future licensing
of the source code, all resale rights, and all publishing rights.

 Notices xiii

We ask, but do not require, that the following message be included in all
derived works:

Portions developed at the National Center for Supercomputing Applications at
the University of Illinois at Urbana-Champaign, in collaboration with the
Information Technology Institute of Singapore.

THE UNIVERSITY OF ILLINOIS GIVES NO WARRANTY, EXPRESSED OR
IMPLIED, FOR THE SOFTWARE AND/OR DOCUMENTATION PROVIDED,
INCLUDING, WITHOUT LIMITATION, WARRANTY OF MERCHANTABILITY
AND WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE

� Gradient Technologies, Inc. and Hewlett-Packard Co.

 Copyright Gradient Technologies, Inc. 1991,1992,1993
 Copyright Hewlett-Packard Co. 1988,1990

June, 1993

UNIX is a registered trademark of UNIX Systems Laboratories, Inc.

Gradient is a registered trademark of Gradient Technologies, Inc.

NetLS and Network Licensing System are trademarks of Apollo Computer, Inc.,
a subsidiary of Hewlett-Packard Co.

� Sam Leffler and Silicon Graphics

 Copyright 1988-1996 Sam Leffler
 Copyright 1991-1996 Silicon Graphics, Inc.

Permission to use, copy, modify, distribute, and sell this software and its
documentation for any purpose is hereby granted without fee, provided that (i)
the above copyright notices and this permission notice appear in all copies of
the software and related documentation, and (ii) the names of Sam Leffler and
Silicon Graphics may not be used in any advertising or publicity relating to the
software without the specific, prior written permission of Sam Leffler and Silicon
Graphics.

THE SOFTWARE IS PROVIDED “AS-IS” AND WITHOUT WARRANTY OF
ANY KIND, EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT
LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE
FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL
DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED
OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

 � Compuserve Incorporated

The Graphics Interchange Format is the copyright property of Compuserve
Incorporated. GIF(SM) is a Service Mark property of Compuserve Incorporated.

� Integrated Computer Solutions, Inc.

Motif Shrinkwrap License

READ THIS LICENSE AGREEMENT CAREFULLY BEFORE USING THE
PROGRAM TAPE, THE SOFTWARE (THE “PROGRAM”), OR THE
ACCOMPANYING USER DOCUMENTATION (THE “DOCUMENTATION”).

xiv IBM Visualization Data Explorer: User’s Reference

THIS AGREEMENT REPRESENTS THE ENTIRE AGREEMENT
CONCERNING THE PROGRAM AND DOCUMENTATION POSAL,
REPRESENTATION, OR UNDERSTANDING BETWEEN THE PARTIES WITH
RESPECT TO ITS SUBJECT MATTER. BY BREAKING THE SEAL ON THE
TAPE, YOU ARE ACCEPTING AND AGREEING TO THE TERMS OF THIS
AGREEMENT. IF YOU ARE NOT WILLING TO BE BOUND NY THE TERMS
OF THIS AGREEMENT, YOU SHOULD PROMPTLY RETURN THE
CONTENTS, WITH THE TAPE SEAL UNBROKEN; YOUR MONEY WILL BE
REFUNDED.

1. License: ISC remains the exclusive owner of the Program and the
Documentation. ICS grant to Customer a nonexclusive, nontransferable (except
as provided herein) license to use, modify, have modified, and prepare and
have prepared derivative works of the Program as necessary to use it.

2. Customer Rights: Customer may use, modify and have modified and prepare
and have prepared derivative works of the Program in object code form as is
necessary to use the Program. Customer may make copies of the Program up
to the number authorized by ICS in writing, in advance. There shall be no fee
for Statically linked copies of the Motif libraries. Statically linked copies are
object code copies integrated within a single application program and
executable only with that single application. Run Time copies require payment
of ICS' then applicable fee. Run Time copies are copies which include any
portion of a linkable object file (“.o” file), library file (“.a” file), the window
manager (mwm manager), the U.I.L. compiler, a shared library, or any tool or
mechanism that enables generation of any portion of such components; other
copies will require payment of ICS' applicable fees. TRANSFERS TO THIRD
PARTIES OF COPIES OF THE LICENSED PROGRAMS, OR OF
APPLICATIONS PROGRAMS INCORPORATING THE PROGRAM (OR ANY
PORTION THEREOF), REQUIRE ICS' RESELLER AGREEMENT. Customer
may not lease or lend the Program to any party. Customer shall not attempt to
reverse engineer, disassemble or decompile the program.

3. Limited Warranty: (a) ICS warrants that for thirty (30) days from the delivery
to Customer, each copy of the Program, when installed and used in
accordance with the Documentation, will conform in all material respects to the
description of the Program's operations in the Documentation. (b) Customer's
exclusive remedy and ICS' sole liability under this warranty shall be for ICS to
attempt, through reasonable efforts, to correct any material failure of the
Program to perform as warranted, if such failure is reported to ICS within the
warranty period and Customer, at ICS' request, provides ICS with sufficient
information (which may include access to Customer's computer system for use
of Customer's copies of the Program by ICS personnel) to reproduce the defect
in question; provided, that if ICS is unable to correct any such failure within a
reasonable time, ICS may, at its sole option, refund to the Customer the license
fee paid for the Product. (c) ICS need not treat minor discrepancies in the
Documentation as errors in the Program, and may instead furnish correction to
the Program. (d) ICS does not warrant that the operation of the Program will be
uninterrupted or error-free, or that all errors will be corrected. (e) THE
FOREGOING WARRANTY IS IN LIEU OF, AND ICS DISCLAIMS, ALL OTHER
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY
PARTICULAR PURPOSE. IN NO EVENT WILL ICS BE LIABLE FOR ANY
INCIDENTAL OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT

 Notices xv

LIMITATION LOST PROFITS, ARISING OUT OF THE USE OR INABILITY TO
USE THE PROGRAM OR DOCUMENTATION.

4. Term and Termination: The term of this agreement shall be indefinite;
however, this Agreement may be terminated by ICS in the event of a material
default by Customer which is not cured within thirty (30) days after the receipt
of notice of such breech by ICS. Customer may terminate this Agreement at
any time by destruction of the Program, the Documentation, and all other
copies of either of them. Upon termination, Customer shall immediately cease
use of, and return immediately to ICS, all existing copies of the Program and
Documentation, and cease all use thereof. All provisions hereof regarding
liability and limits thereon shall survive the termination of this the Agreement.

5. U.S. GOVERNMENT LICENSES. If the Product is provided to the U.S.
Government, the Government acknowledges receipt of notice that the Product
and Documentation were developed at private expense and that no part of
either of them is in the public domain. The Government acknowledges ICS'
representation that the Product is “Restricted Computer Software” as defined in
clause 52.227-19 of the Federal Acquisition Regulations (the “FAR” and is
“Commercial Computer Software” as defined in Subpart 227.471 of the
Department of Defense Federal Acquisition Regulation Supplement (the
“DFARS”). The Government agrees that (i) if the software is supplied to the
Department of Defense, the software is classified as “Commercial Computer
Software” . and that the Government is acquiring only “Restricted Rights” in the
software and its documentation as that term is defined in Clause
252.227-7013(c)(1) of the DFARS and (ii) if the software is supplied to any unit
or agency of the Government other than the Department of Defense, then
notwithstanding any other lease or license agreement that may pertain to, or
accompany the delivery of, the computer software and accompanying
documentation, the rights of the Government regarding its use, reproduction
and disclosure are as set forth in Clause 52.227-19(c)(2) of the FAR. All copies
of the software and the documentation sold to or for use by the Government
shall contain any and all notices and legends necessary or appropriate to
assure that the Government acquires only limited right in any such
documentation and restricted rights in any such software.

6. Governing Law: This license shall be governed by and construed in
accordance with the laws of the Commonwealth of Massachusetts as a contract
made and performed therein.

� OMRON Corporation, NTT Software Corporation, and MIT

 Copyright 1990, 1991 by OMRON Corporation, NTT Software Corporation,
and Nippon Telegraph and Telephone Corporation
 Copyright 1991 by the Massachusetts Institute of Technology

Permission to use, copy, modify, distribute, and sell this software and its
documentation for any purpose is hereby granted without fee, provided that the
above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the
names of OMRON, NTT Software, NTT, and M.I.T. not be used in advertising
or publicity pertaining to distribution of the software without specific, written
prior permission. OMRON, NTT Software, NTT, and M.I.T. make no
representations about the suitability of this software for any purpose. It is
provided “as is” without express or implied warranty.

xvi IBM Visualization Data Explorer: User’s Reference

OMRON, NTT SOFTWARE, NTT, AND M.I.T. DISCLAIM ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL
OMRON, NTT SOFTWARE, NTT, OR M.I.T. BE LIABLE FOR ANY SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE
USE OR PERFORMANCE OF THIS SOFTWARE.

 Notices xvii

xviii IBM Visualization Data Explorer: User’s Reference

 About

About This Reference

Typographic Conventions . xx
Related Publications and Sources . xx

IBM Publications . xx
Non-IBM Publications . xx
Other sources of information . xxi

 Copyright IBM Corp. 1991-1997 xix

This manual contains detailed descriptions of IBM Visualization Data Explorer\
tools for transforming, realizing, and rendering data. Each description includes the
script-language syntax for invoking the tool; input and output specifications; details
of module function; and names of sample visual programs that demonstrate the
module’s function.

It is strongly recommended that first-time user’s of Data Explorer consult the IBM
Visualization Data Explorer QuickStart Guide before proceeding (see “Related
Publications and Sources”).

Users creating visual programs or scripts should consult this reference in
conjunction with IBM Visualization Data Explorer User’s Guide, which contains
information about the development and modification of visual programs and the
syntax of the Data Explorer scripting language.

 Typographic Conventions
Boldface Identifies commands, keywords, files, directories, messages from the

system, and other items whose names are defined by the system.

Italic Identifies parameters with names or values to be supplied by the user.

Monospace Identifies examples of specific data values and text similar to what you
might see displayed or might type at a keyboard or that you might write
in a program.

Related Publications and Sources

 IBM Publications
� IBM Visualization Data Explorer User’s Guide, SC38-0496

Details the main features of Data Explorer, including the data model, data
import, the user interface, the Image window, and the visual program editor.
and the scripting language. Of particular interest to programmers: chapters on
the data model and the scripting language.

� IBM Visualization Data Explorer User’s Reference, SC38-0486

Contains detailed descriptions of Data Explorer’s tools.

Note: Consult this reference if you are creating visual programs or scripts.

� IBM Visualization Data Explorer Programmer’s Reference, SC38-0497

Contains detailed descriptions of the Data Explorer library routines.

Note: Consult this reference if you are writing your own modules for Data
Explorer.

 Non-IBM Publications
The following treat various aspects of computer graphics and visualization:

Adobe Systems Incorporated, PostScript Language Reference Manual, 2nd
Ed., Addison-Wesley Publishing Company, Massachusetts, 1990.

Aldus Corporation and Microsoft Corporation, Tag Image File Format
Specification, Revision 5.0, Aldus Corporation, Washington, 1988.

xx IBM Visualization Data Explorer: User’s Reference

 About

Arvo, Jim, ed., Graphics Gems II, Academic Press, Inc., Boston,
Massachusetts, 1991.

Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F., Computer Graphics:
Principles and Practice, Addison-Wesley Publishing Company; Massachusetts,
1990.

Friedhoff, Richard M., and Benzon, William, Visualization: The Second
Computer Revolution, New York, Harry N. Abrams, Inc., 1989.

Glassner, Andrew, ed., Graphics Gems, Academic Press, Inc., Boston,
Massachusetts, 1990.

Hill, F.S., Jr., Computer Graphics. Macmillan Publishing Company, New York,
1990.

Kirk, David, ed., Graphics Gems III, Academic Press, Inc., Boston,
Massachusetts, 1992.

Robin, Harry, The Scientific Image: from cave to computer, Harry N. Abrams,
Inc., New York, 1992.

Rogers, David F., Procedural Elements for Computer Graphics, McGraw-Hill
Book Company, New York, 1985.

Rogers, David F. and Adams, J.Alan, Mathematical Elements for Computer
Graphics, 2nd Ed., New York, McGraw-Hill Book Company, 1990.

SIGGRAPH Conference Proceedings, Association for Computing Machinery,
Inc.: A Publication of ACM SIGGRAPH, New York, various years.

Tufte, Edward, The Visual Display of Quantitative Information, Graphics Press,
Cheshire, Connecticut, 1983.

Other sources of information
For additional ideas, consult the “DX Repository,” available through anonymous
FTP (ftp.tc.cornell.edu. in directory pub/Data.Explorer), and gopher
(ftp.tc.cornell.edu. port 70). This public software resource includes information
and visual programs contributed by Data Explorer users from around the world.
We encourage you to contribute your innovations and ideas to the Repository, in
the form of new modules, macros, visual programs, and tips and tricks you discover
as you learn and master Data Explorer.

On the Internet, the newsgroup comp.graphics.apps.data-explorer is used by
customers around the word to share information and ask questions. This
newsgroup is also followed by Data Explorer developers.

If you have access to the World Wide Web, you can find the Data Explorer home
page at http://www.almaden.ibm.com/dx/.

 About This Reference xxi

xxii IBM Visualization Data Explorer: User’s Reference

Chapter 1. Data Explorer Tools

1.1 Tool Categories . 3
Annotation . 3
DXLink . 4
Debugging . 4
Flow Control . 4
Import and Export . 5
Interactor . 6
Interface Control . 7
Realization . 7
Rendering . 8
Special . 10
Structuring . 11
Transformation . 12
Windows . 13

 Copyright IBM Corp. 1991-1997 1

Data Explorer tools (i.e., tool modules) perform a variety of functions to generate
visual images. In the VPE window, their icons can be used as “building blocks” to
create visual program networks, from which images are generated in the Image
window. They can also be invoked from script-language programs or from the
command line (when Data Explorer is in “script mode”). And they can be grouped
together in macros for greater efficiency.

Many modules are accessible through both the graphical user interface and the
scripting language. Some, however, are available only through the user interface:
the Interactors, the Color Editor, Image, Pick, Probe, Receiver, and Transmitter.
Most have default values for parameter inputs, values that are (as much as
possible) appropriate for the data involved. These defaults enable the new user to
begin visualizing data with only a few connections and to customize a visualization
program one step at a time.

Tools are divided into the categories listed in the top palette of the VPE window:

 � Annotation
 � DXLink
 � Debugging
 � Flow Control
� Import and Export

 � Interactor
 � Interface Control
 � Realization
 � Rendering
 � Special
 � Structuring
 � Transformation
 � Windows
� {ALL} (an alphabetic listing of all the tools).

The directory /usr/lpp/dx/samples/programs contains visual program examples
that use these tools, along with a subdirectory (.../SIMPLE) of simpler examples.
Use the Open file-selection dialog box to call up either directory (adding “/*.net” to
the directory name when you enter it in the Filter text field). For a description of a
visual program, either highlight the program name in the Files list of the dialog box
and click on the Comments pushbutton or select the Application Comment option of
the Help pull-down menu (after the visual program is loaded).

The directory /usr/lpp/dx/samples/scripts contains script examples for all of the
modules. Descriptions are included as comments in the script files themselves.

The rest of this chapter summarizes the tool categories and the tools they contain.
The order in which they appear is the same as that displayed in the palettes of the
VPE window. For detailed descriptions of individual tools, see Chapter 2,
“Functional Modules” on page 15.

Note: Two modules that appear in Chapter 2 are available only in script mode
and so are not listed in any of the Visual Program Editor categories:

Executive Executes an executive command (see “Executive” on
page 126).

KeyIn Waits for input from the system prompt in the window from
which you invoked Data Explorer (see “KeyIn” on page 193).

2 IBM Visualization Data Explorer: User’s Reference

 1.1 Tool Categories

 Annotation
These tools add various kinds of information to a visualization.

AutoAxes Creates an axes box for a specified data set, using a
specified camera. The camera is required so that the
AutoAxes module can determine how to position the axes
box and labels.

AutoGlyph Produces glyphs (a representational figure, such as an
arrow) for every data value in an input Field. The size and
type of glyph are based on the data it receives.

Caption Creates a caption for an image. The caption position
specified in pixel- or viewport-relative coordinates. Captions
always remain aligned to the screen.

ColorBar Creates a color bar to be displayed on the screen. It accepts
a color map as input.

Format Creates a string from numeric values. For example, you can
create the string “Isosurface value = 23.4”, where 23.4 is
the output of an Interactor.

Glyph Produces glyphs for every data value in an input Field. This
module allows more precise control of glyph size than
AutoGlyph does.

Legend Produces a legend which associates a string with a color.

Parse Separates a string into its component parts (e.g., the string
“data = 3.7” into “data”, “=”, and the floating point value
“3.7”).

Plot Creates a 2-dimensional plot from a line. You can specify:
customized labels for the axes; axes limits; y-axes on the left
and right sides of the plot; and logarithmic or linear axes.

Ribbon Produces a ribbon of specified width from an input line. If a
“normals” component is present on the line (e.g., if the curl
option was used to create a streamline or streakline), the
twist of the ribbon will correspond to the direction of the
“normals.”

Text Produces text that appears in the “space” occupied by the
image. That is, unlike Caption, this module specifies the text
position and size in the same coordinates as the data.

Tube Produces a tube of specified diameter and number of sides
from an input line. If a “normals” component is present on
the line (e.g., if the curl option was used to create a
streamline or streakline), the twist of the tube will correspond
to the direction of the “normals.”

 Chapter 1. Data Explorer Tools 3

 DXLink
These tools are used to control Data Explorer from a separate program.

Note: According to UNIX alphabetical convention, capital letters precede lower
case. Thus DXLink precedes Debugging in the category pallet of the VPE, and the
DXLink routines precede Direction in the tools pallet and in the routine descriptions
in Chapter 2, “Functional Modules” on page 15.

DXLInput Enables a remote DXLink application to set a parameter
value in a visual program.

DXLInputNamed Enables a remote DXLink application to set a parameter
value in a visual program, but also allows the name of the
variable to be set via a wire into the DXLInputNamed tool.

DXLOutput Sends a value to a remote application.

 Debugging
These tools facilitate the analysis of a program’s execution.

Describe Presents information about any Data Explorer object in the
Message window.

Echo Echoes a message. It can also print simple Array Objects
(e.g., output of the Statistics module). In the user interface
this output appears in the Message window.

Message Displays a message to the user, either in the Message
window or in a pop-up dialog box.

Print Prints information about an Object (e.g. a Field or a Camera).
You can specify the level of detail. In the user interface the
output appears in the Message window.

System Allows you to execute arbitrary operating-system commands.

Trace Enables the tracing of time spent in a module, tracing of
memory, or the use of debugging flags or user-written
modules.

Usage Prints the amount of memory currently being used by Data
Explorer.

Verify Checks an Object for internal consistency.

VisualObject Creates a renderable object representing an object’s
hierarchy.

 Flow Control
These tools control the flow of execution in a visual program.

For additional information, see Chapter 4, “Data Explorer Execution Model” on
page 37 in IBM Visualization Data Explorer User’s Guide.

Done Specifies whether an executing loop should terminate.

Execute Allows the user to change the execution state of a visual
program without using the Execute pull-down menu in the
user interface.

First Indicates whether the current iteration of the loop is the first.

4 IBM Visualization Data Explorer: User’s Reference

ForEachMember Initiates a loop for each member of a group or item in an
array.

ForEachN Iterates through a specified set of integers.

GetGlobal Retrieves an object from the cache. Maintains state between
executions.

GetLocal Retrieves an object from the cache.

Route Routes an Object through selector-specified output paths.

SetGlobal Places an object in the cache. Maintains state between
executions.

SetLocal Places an object in the cache.

Switch Switches the output between a list of inputs.

Import and Export
The first two tools listed, along with ReadImage and WriteImage, are concerned
with the flow of data into and out of a visual program. The others typically process
data immediately after it has been imported.

Export Exports Objects created in Data Explorer to an external data
file (in Data Explorer file format).

Import Brings data into Data Explorer from a specified file. If the file
contains more than one variable or contains multiple frames
of data, portions of the data can be specified for importation.
Supported formats are native Data Explorer format, CDF,
netCDF, HDF, and General Array format.

ImportSpreadsheet Brings data into Data Explorer from spreadsheet, or tabular,
data file.

Include Includes (or excludes) points based on their data values
(e.g., removing all points with data values greater than 9.3).
It can also be used to remove data marked as invalid.

Partition Subdivides data to take advantage of parallelism for Data
Explorer SMP. You can control the level of subdivision.

ReadImage Reads an image from an external file.

Reduce Reduces the resolution of a data set, filtering and resampling
the set at a lower resolution.

Refine Increases the number of samples in a data set. This module
interpolates data values or colors at the new positions from
the data or color values at the original positions. It can also
convert connections from quads or faces to triangles, and
from cubes to tetrahedra.

Slab Takes a positional subset of a data set with regular
connections (cubes, quads, and lines). You can specify
along which axis to take the subset, where the slab should
begin, and how thick the slab is to be. The module performs
no interpolation.

 Chapter 1. Data Explorer Tools 5

Slice Takes a positional subset of a data set with regular
connections, like the Slab module. However, unlike the Slab
module, it creates output with a dimensionality 1 less than
the dimensionality of the input. For example, you can import
a data set as a 4-dimensional grid, with the fourth dimension
representing time. You can then use the Slice module to
create 3-dimensional slices of the data set.

Stack Stacks a series of n-dimensional Fields to form a single
(n+1)-dimensional Field. This module can also be used to
increase the dimensionality of a single Field.

Transpose Transposes the positions of a Field. For example, it can
interchange the x and y axes.

WriteImage Writes an image to an external file in a specified format. The
same functionality is provided by the SaveImage option of the
File pull-down menu of the Image window.

 Interactor
These tools provide interactive control of inputs to other modules in visual
programs. They can be used only with the user interface.

For additional information, see 7.1, “Using Control Panels and Interactors” on
page 128 in IBM Visualization Data Explorer User’s Guide. Interactors are named
after the type of data they control:

FileSelector Presents a standard Motif file-selector dialog box. The
output is a file name.

Integer Presents a stepper, slider, dial, or text interactor. The output
is a whole number.

IntegerList Presents a scrolled-list or text interactor. The output is a list
of integers.

Reset Presents a toggle button. The output is one value the first
time it is run, and a different value on subsequent runs until
the toggle is selected again.

Scalar Presents a stepper, slider, dial, or text interactor. The output
is a real number.

ScalarList Presents a stepper, slider, dial, or text interactor. The output
is list of scalar values.

Selector Presents an option menu, a set of radio buttons, or a toggle
button. The outputs are a value and a string, representing a
choice from a selection.

SelectorList Presents a selection list. The output is a list of values and a
list of strings, representing a choice of one or more from
many.

String Presents a text interactor. The output is a text string.

StringList Presents a scrolled-text list. The output is a list of strings.

Toggle Presents a toggle button. The output is one of two values
(set or unset).

6 IBM Visualization Data Explorer: User’s Reference

Value Presents a text interactor. The output is a value (scalar,
vector, tensor, or matrix).

ValueList Presents a scrolled list or text interactor. The output is a
value list.

Vector Presents a stepper or text interactor. The output is a vector.

VectorList Presents a scrolled-list or text interactor. The output is a
vector list.

 Interface Control
These tools are used to control Data Explorer tools from within a visual program.

ManageColormapEditor
Allows colormap editors to be opened and closed from within
a visual program.

ManageControlPanel
Allows control panels to be opened and closed from within a
visual program.

ManageImageWindow
Allows image windows to be opened and closed from within
a visual program.

ManageSequencer Determines whether the Sequence control panel is displayed
or not.

 Realization
These tools create structures for rendering and display (e.g., bands, triangle
connections, isosurfaces, and boundary boxes).

AutoGrid Maps a set of scattered points onto a grid. The grid will be
created automatically by Data Explorer.

Band Divides a Field into bands based on given division values.

Connect Creates triangle connections for a Field of scattered
positions.

Construct Constructs an arbitrary Field. You can specify the origin, the
deltas, the counts in each dimension, and the data. You can
also use Construct to create a Field containing a “positions”
component with given position values (e.g., the output of the
ProbeList tool).

Enumerate Generates a numeric list.

Grid Produces a set of points on a grid. You can construct
rectangles, ellipses, lines, crosshairs, and bricks. You can
specify the size of the object and the number of points in the
grid.

Isolate Shrinks the connections elements of a Field so that they can
be individually seen.

Isosurface Creates surfaces or lines of constant value. For volumetric
inputs, it creates isosurfaces; for surface inputs, contour
lines. Use the ClipPlane module to display the interior of an
isosurface.

 Chapter 1. Data Explorer Tools 7

MapToPlane Maps a 3-dimensional data Field onto an arbitrary plane.
You can specify a point and a normal to define the plane.

Regrid Maps a set of scattered points onto a specified grid.

RubberSheet Deforms a surface field (composed of triangles, quads, or
lines) by an amount proportional to the data value at each
point. You can use the Normals or FaceNormals module to
add shading before rendering.

Sample Produces a set of points in an arbitrary field. For example,
you can produce a set of approximately evenly spaced
samples on an isosurface.

ShowBoundary Creates a renderable object that is the boundary of a
volumetric field.

ShowBox Creates a set of renderable lines that represent the bounding
box of a field.

ShowConnections Creates a set of renderable lines that represent the
connections of elements in a field.

ShowPositions Creates a set of renderable points that represent the
positions of a field.

Streakline Computes a line that traces the path of a particle through a
changing vector field. The data input to the module is a
vector field series, or a single field that is a member of a
vector field series. You can control the starting points of the
streaklines, and can optionally provide a curl field to produce
twist on any ribbons or tubes constructed from the streakline.

Streamline Computes a line that traces the path of a particle through a
constant vector field. The data input to the module is a
vector field. You can control the starting points of the
streamlines, and can optionally provide a curl field to produce
twist on any ribbons or tubes constructed from the
streamline.

 Rendering
These tools create a displayable image from a renderable object or modify the
visual characteristics of the object(s) being displayed. For example, Normals and
FaceNormals could be used to add shading to a geometrical structure created with
RubberSheet (Realization category), while Light and AmbientLight could be used to
change its default lighting.

AmbientLight Produces an ambient light. You can specify the color of the
light. Ambient lights illuminate a surface equally, regardless
of direction, so an object illuminated only with ambient light is
not shaded. Note that it is not necessary to specify an
ambient light, because a small amount of ambient light is
built into the object model. However, explicitly specified
lighting overrides the default lighting.

Arrange Creates a single image from a collection of images. You can
specify how many images to put in a row.

8 IBM Visualization Data Explorer: User’s Reference

AutoCamera This module produces an appropriate camera as input to the
Render or Display module. Specifying a “look-from” direction
changes this default camera. The width of the image in
model units (orthographic projection) or the field of view
(perspective projection), or the image size and aspect ratio
can also be changed.

Camera Produces a camera for input to the Render or Display
module. You can specify the “look-to” point, the “look-from”
point, the width of the image in units corresponding to those
in the data, the image size, and the aspect ratio. Camera
differs from AutoCamera in that it specifies a “look from” a
point instead of a direction.

ClipBox Clips an object using a box. You can specify the box
explicitly, as the two corners defining a box, or it can be the
bounding box of an object. The module renders only that
part of the object inside the box. The Render, Display, or
Image tool actually performs the clipping.

ClipPlane Clips an object by a plane. The user specifies the plane with
a point and a normal. The side of the plane the normal
projects into is the side that will be clipped (i.e., not
displayed). The Render, Display, or Image tool performs the
clipping.

Display Renders and/or displays an image to the screen. If a camera
is not provided, the Display module expects the first input to
be an image (e.g., the output of Render or Arrange).

FaceNormals Computes normals on a surface. When you use the
FaceNormals module, each face of the surface is flat-shaded.

Image This tool renders and displays an image to the screen. It
performs like the AutoCamera and Display modules
combined. Using the Image tool to render an image enables
many direct interactors that are not available when using
AutoCamera and Display. These options are available in the
View Control option of the Options pull-down menu in the
Image window. For example, see “Controlling the Image:
View Control...” on page 74 in IBM Visualization Data
Explorer User’s Guide. The Image tool is available only in
the graphical user interface.

Light Produces a distant point light. You can specify the direction
and color of the light. Note that it is not necessary to specify
a light, because there is a default light built into the object
model; however, explicitly specified lighting overrides the
default lighting.

Normals Computes point or face normals for shading a surface. For
example, you can use this module to produce shading on
rubbersheets and boundaries. However, shading on an
isosurface is smoother if you use the gradient shading
options built into the Isosurface module.

Overlay Overlays two images. The result is a new image that can be
displayed using the Display module. The new image is a
pixel-by-pixel sum of the two images, where 1 − blend

 Chapter 1. Data Explorer Tools 9

attenuates the base-image pixels, and blend attenuates the
overlay-image pixels, (blend is a value between 0 and 1).
You can also perform chromakeying by specifying blend as
an RGB color or as a string specifying a color.

Render Renders an object and creates an image. The object can be
any combination of volumes, surfaces, lines, and points, and
you can clip the object. You need to provide a camera to the
Render module to specify the viewing direction.

Reorient Rotates or inverts an image or a group of images.

Rotate Rotates an object around specified axes. The Render,
Display, or Image tool actually performs the rotation.

Scale Changes an object’s dimensions along the x, y, and z axes.
The scaling is actually performed in the Render, Display, or
Image tool.

ScaleScreen Scales all screen objects (typically captions and color bars)
by a specified amount.

Shade Allows you to specify object-shading parameters such as
specularity.

Transform Moves, rotates, and resizes an object. The Render, Display,
or Image tool actually performs the translation.

Translate Moves an object along the x, y, and z axes. The Render,
Display, or Image tool actually performs the translation.

UpdateCamera Makes specified alterations to the input camera.

 Special
Tools in this category can be used in visual programs for a variety of purposes.

Note: For details, see the sections of the IBM Visualization Data Explorer User’s
Guide referred to in the following list.

Colormap Presents an interactor tool for creating color maps.

Input Defines an input to a macro. See 7.2, “Creating and Using
Macros” on page 149 for information.

Output Defines an output of a macro. See 7.2, “Creating and Using
Macros” on page 149 for information.

Pick Allows the user to pick objects in a scene using the mouse.
See “Using Pick” on page 87 for information.

Probe Allows the user to pick an xyz point in a scene using the
mouse. See “Using Probes (Cursors)” on page 85 for
information.

ProbeList Allows the user to pick multiple xyz points in a scene using
the mouse. See “Using Probes (Cursors)” on page 85 for
information.

Receiver Receives the output of a transmitter for “wireless”
connections. See “Using Transmitters and Receivers” on
page 106 for information.

10 IBM Visualization Data Explorer: User’s Reference

Sequencer Allows animation of a visual program. See “Using the
Sequencer” on page 68 in IBM Visualization Data Explorer
User’s Guide for information.

Transmitter Outputs an Object for “wireless” connections. See “Using
Transmitters and Receivers” on page 106 for information.

 Structuring
These tools manipulate Data Explorer data structures. Their functions include the
creation of hierarchies, selection of elements in a hierarchy, allowing operations on
components other than “data,” manipulation of Field or Group components, and
determining which branches of a visual program are to be executed.

Append Adds Objects as members to an existing Group.

Attribute Extracts an attribute from an Object.

ChangeGroupMember
Inserts, renames, or deletes a member of an existing Group.

ChangeGroupType Changes the type of a Group.

Collect Collects Objects into a Group. For example, you can use
Collect to collect a streamline, an isosurface, and a light.
You can then pass the collection to the Image tool.

CollectMultiGrid Collects Objects into a Multigrid (a Group that will be treated
as a single data Object).

CollectNamed Collects Objects into a Group (like Collect) but allows each
Object in the Group to be given a name.

CollectSeries Collects Objects into a Series. You give each element of the
series a series position (e.g., a time tag).

CopyContainer Copies the top container Object.

Extract Extracts a component from a Field (e.g., the “colors”
component).

Inquire Returns information about the input Object (e.g., data type,
number of elements, etc.).

List Concatenates several items into a single list.

Mark Marks a specified component in a Field as the data
component. Many modules operate only on the “data”
component. Thus the Mark module allows modules to
operate on components other than data (e.g., “positions” or
“colors”). If a “data” component already exists, it is
preserved in a “saved data” component. You can restore it
by using the Unmark module.

Options Associates attributes with an Object. For example, plotting
options such as marker type can be specified by adding
attributes to the line.

Remove Removes a specified component from a Field.

Rename Renames a component in a Field. For example, you could
rename the “colors” component to “front colors” to get only
front-facing colors. You should be aware that component

 Chapter 1. Data Explorer Tools 11

names have special meanings to modules using them. See
Chapter 3, “Understanding the Data Model” on page 15 in
IBM Visualization Data Explorer User’s Guide.

Replace Replaces a component in one Field with a component from
another, or with an input Array.

Select Selects members out of a Group or elements from a list. two
isosurfaces, a streamline, and a mapped plane. You could
then use the selector input to the module to choose which
of these is the output of the module.

Unmark Undoes the action of the Mark module. It moves the “data”
component back to the component you specify, and the
“saved data” component is restored to the “data” component.

 Transformation
These tools generally modify or add to components of the input Field without
changing its underlying positions and connections. For example, AutoColor creates
a “colors” component based on the data values of a Field and Compute performs a
mathematical operation on the “data” component of a Field.

AutoColor Automatically colors a data Field. By default, the minimum
data value is blue, the maximum data value is red, and data
values between are blue to red through cyan, green, and
yellow. You can control what subset of the data range to
color and what portion of the color wheel to use. You can
also control the opacity of the object and the intensity of the
colors. AutoColor also chooses appropriate colors and
opacities for volume rendering.

AutoGrayScale Automatically colors a data field using a gray scale.

Categorize Categorizes data, creating an integer data component along
with a lookup table into which the integers reference.

CategoryStatistics Performs various statistics such as minimum, maximum,
number of items, etc., on categorical data.

Color Allows you more control over the coloring of an object than is
possible with AutoColor. You can specify a string
representing a color (e.g., “spring green”), an RGB color, or a
color map (from the Colormap Editor, for example) to be
applied to a data Field. You can also use the Color module
to make objects (e.g., isosurfaces) translucent.

Compute Performs point-by-point arithmetic on a Field or Fields. For
example, it can add the “data” component of one Field to the
tangent of the “data” component of another Field. You can
also use the Compute module to select components from a
vector data Field; construct a vector “data” component from a
set of scalar input data Fields; or perform conditional
operations.

Compute2 Differs from Compute in allowing the expression to be
passed in by means of an input tab (e.g., from a Selector
interactor).

12 IBM Visualization Data Explorer: User’s Reference

Convert Converts between hue, saturation, and value color space and
red, green, and blue color space. You can convert either a
single vector, a list of vectors, or a color map.

DFT Performs a discrete Fourier transformation on a 2- or
3-dimensional field.

Direction Converts azimuth, elevation, and distance to Cartesian
coordinates (x, y, and z), which are useful for specifying
camera viewing directions and for specifying ClipPlane or
MapToPlane normal directions.

DivCurl Computes the divergence and the curl of a vector field.

Equalize Applies histogram equalization to a field.

FFT Performs a fast Fourier transformation on a 2- or
3-dimensional field.

Filter Filters a Field. You can specify a name describing a filter
(e.g., “laplacian”) or a filter matrix explicitly.

Gradient Computes the gradient of a scalar Field.

Histogram Computes a histogram and the median of an input data Field.
You can then use Plot to visualize the result as a
2-dimensional graph.

Lookup Uses one object to look up the value of another object in a
field.

Map Maps Fields onto one another. For example, you can map a
data Field onto an isosurface or onto a tube that has been
formed from a streamline.

Measure Performs measurements (e.g., surface area or volume) on a
data Object.

Morph Applies a binary morphological operator, such as erode or
dilate.

Post Changes the dependency of data (and other components)
between positions and connections.

QuantizeImage Converts an image from a format containing (potentially) as
many colors as pixels to a quantized image with a color map
with a user-specified number of colors between 8 and 256.

Sort Sorts a list or Field based on values in the data component.

Statistics Computes the statistics of a Field: the mean, standard
deviation, variance, minimum, and maximum. You can use
these statistics as input for other modules, or print them
using the Echo or Print modules.

 Windows
These tools create or supervise image windows.

ReadImageWindow reads back an image (pixels) from an Image or Display
window, for both hardware and software rendered images.

SuperviseState watches for and acts on mouse and keyboard events in a
Display window, based on user-defined callbacks.

 Chapter 1. Data Explorer Tools 13

SuperviseWindow creates a window which will be monitored by SuperviseState.

14 IBM Visualization Data Explorer: User’s Reference

 Modules Chapter 2. Functional Modules

AmbientLight . 20
Append . 22
Arrange . 24
Attribute . 26
AutoAxes . 27
AutoCamera . 31
AutoColor . 34
AutoGlyph . 37
AutoGrayScale . 42
AutoGrid . 45
Band . 47
Camera . 49
Caption . 52
Categorize . 55
CategoryStatistics . 57
ChangeGroupMember . 59
ChangeGroupType . 61
ClipBox . 63
ClipPlane . 65
Collect . 67
CollectMultiGrid . 69
CollectNamed . 71
CollectSeries . 73
Color . 75
ColorBar . 81
Colormap . 84
Compute . 86
Compute2 . 92
Connect . 94
Construct . 96
Convert . 98
CopyContainer . 100
DFT . 101
DXLInput . 102
DXLInputNamed . 104
DXLOutput . 106
Describe . 107
Direction . 108
Display . 109
DivCurl . 118
Done . 119
Echo . 120
Enumerate . 121
Equalize . 123
Execute . 125
Executive . 126
Export . 129
Extract . 131
FFT . 132
FaceNormals . 134

 Copyright IBM Corp. 1991-1997 15

FileSelector . 136
Filter . 137
First . 141
ForEachMember . 142
ForEachN . 144
Format . 146
GetGlobal . 149
GetLocal . 151
Glyph . 153
Gradient . 155
Grid . 156
Histogram . 158
Image . 160
Import . 165
ImportSpreadsheet . 170
Include . 173
Input . 177
Inquire . 178
Integer . 184
IntegerList . 186
Isolate . 189
Isosurface . 190
KeyIn . 193
Legend . 194
Light . 197
List . 199
Lookup . 201
ManageColormapEditor . 203
ManageControlPanel . 205
ManageImageWindow . 206
ManageSequencer . 208
Map . 209
MapToPlane . 212
Mark . 214
Measure . 216
Message . 219
Morph . 220
Normals . 222
Options . 224
Output . 227
Overlay . 228
Parse . 230
Partition . 232
Pick . 234
Plot . 237
Post . 242
Print . 244
Probe . 246
ProbeList . 247
QuantizeImage . 248
ReadImage . 250
ReadImageWindow . 253
Receiver . 254
Reduce . 256

16 IBM Visualization Data Explorer: User’s Reference

 Modules

Refine . 258
Regrid . 260
Remove . 262
Rename . 263
Render . 264
Reorient . 266
Replace . 268
Reset . 270
Ribbon . 271
Rotate . 273
Route . 275
RubberSheet . 277
Sample . 280
Scalar . 282
ScalarList . 285
Scale . 288
ScaleScreen . 289
Select . 291
Selector . 293
SelectorList . 295
Sequencer . 297
SetGlobal . 299
SetLocal . 300
Shade . 301
ShowBoundary . 303
ShowBox . 305
ShowConnections . 307
ShowPositions . 309
SimplifySurface . 311
Slab . 315
Slice . 317
Sort . 319
Stack . 320
Statistics . 322
Streakline . 323
Streamline . 327
String . 330
StringList . 331
SuperviseState . 332
SuperviseWindow . 336
Switch . 340
System . 342
Text . 343
Toggle . 345
Trace . 347
Transform . 349
Translate . 351
Transmitter . 352
Transpose . 354
Tube . 356
Unmark . 358
UpdateCamera . 360
Usage . 362
Value . 364

 Chapter 2. Functional Modules 17

ValueList . 365
Vector . 366
VectorList . 369
Verify . 372
VisualObject . 373
WriteImage . 374

18 IBM Visualization Data Explorer: User’s Reference

 Modules

The entries that follow describe the Data Explorer functional modules. They are
listed in alphabetical order by module name and contain the following information:

� Module name and short description (see Note 1)
 � Syntax
� Inputs and default values

 � Outputs
� Details of module function
� Components (see Note 2)
� Script language example(s) (in some cases)
� Example program(s) (see Note 3)
� Related modules or information or both.

Notes:

1. The name of the tool category to which a module belongs is printed opposite
the module name (i.e., the name listed in the “Categories” palette of the Visual
Program Editor window). The absence of a category name signifies that the
module is not available in the graphical user interface.

2. This subsection is omitted if the module does not produce a Field as output.

3. These programs are contained in the directory /usr/lpp/dx/samples/programs
or in its subdirectory ...programs/SIMPLE.

 Chapter 2. Functional Modules 19

 AmbientLight

 AmbientLight

 Category
Rendering

 Function
Produces an ambient light.

 Syntax
light = AmbientLight(color);

 Inputs
Name Type Default Description

color vector or
string

[0.2 0.2 0.2] color and intensity of light

 Outputs
Name Type Description

light light the ambient light

 Functional Details
The AmbientLight module produces a light that equally illuminates all surfaces,
regardless of location or direction.

color specifies the color of the light either as an RGB vector or as a
string. If it is a string, it must be one of the defined color-name
strings (see “Color” on page 75).

If no value is specified for this parameter, Data Explorer incorporates an ambient
light of color [0.2 0.2 0.2] (low-intensity white light) to the scene. The system also
uses a distant light of color [1.0 1.0 1.0] (high-intensity white light). (See “Light” on
page 197.)

If a value is specified, the system removes the default lights. Therefore, if you use
AmbientLight and want shading, you must also add a distant light. In addition, if
you desire shading, you should use only relatively small amounts of ambient light (a
value less than about 0.5). Use the Collect module to incorporate the resulting light
into the scene that is given to the Render, Display, or Image tool.

Ambient lights have no effect on volume-rendered objects.

Example Visual Programs
ThunderGlyphSheet.net

UsingLights.net

SIMPLE/Light.net

20 IBM Visualization Data Explorer: User’s Reference

 AmbientLight

 Modules

 See Also
 Collect, Convert, Light

 Chapter 2. Functional Modules 21

 Append

 Append

 Category
Structuring

 Function
Adds one or more specified Objects to an existing Group.

 Syntax
group = Append(input, object, id,...);

 Inputs
Name Type Default Description

input Group (no default) group to which an object is to be
added

object Object (no default) Object to be added

id scalar or
string

(no default) series position or name of
Object

... additional object-id pair(s)

 Outputs
Name Type Description

group group the group with Objects added

 Functional Details
This module differs from Collect, CollectNamed, CollectMultiGrid, and CollectSeries,
which create a new Group with the specified Objects as members. For example, if
the input to the module is a series with four members, the output will be a series
with four + n members, where n is the number of objects specified.

input must be a Group. The type of this Group determines the type of
the output Group.

object is an Object to be added as a member to the Group input.

id specifies additional information to be associated with the appended
Object. For a named Group, this could be the name of the
member. For a Series, it is the series position value. If input is a
series, then id is a required parameter. Otherwise, it is optional.

A single Append module can specify a maximum of 21 object-id pairs. In the user
interface, the default number of enabled parameter tabs is two. (Tabs can be
added to the module icon and removed with the appropriate ...Input Tab options
in the Edit pull-down menu of the VPE.)

22 IBM Visualization Data Explorer: User’s Reference

 Append

 Modules

 Components
All components are propagated to the output.

 See Also
 Collect, CollectMultiGrid, CollectNamed, CollectSeries, Select

 Chapter 2. Functional Modules 23

 Arrange

 Arrange

 Category
Rendering

 Function
Arranges images for display.

 Syntax
image = Arrange(group, horizontal, compact, position, size);

 Inputs
Name Type Default Description

group image group none images to be displayed

horizontal integer infinity number of images in horizontal
dimension

compact vector [0 0] makes the image compact in x
or in y or in both

position vector [.5 .5] position of each image in its
frame

size vector [0 0] force size of each frame to this
number of pixels

 Outputs
Name Type Description

image image resulting image

 Functional Details
This module is useful for displaying a collection of images in an orderly
arrangement.

group is a group of images (e.g., the output of Collect).

horizontal specifies the number of images in the horizontal direction. If there
are more images in group than horizontal, they are arranged in
rows below the first, each of length horizontal.

The compact, position, and size parameters are useful when the images are of
different sizes. In constructing an output image, Arrange creates in effect a regular
arrangement of output blocks, in rows and columns, one original image being
placed in each block. The size of the blocks and the placement of the original
images in them is controlled by these three parameters:

compact specifies how the resulting image is to be “compacted.”

If the first (width) component:

= 0, the width of each column is set to the width of the widest
image in the input group.

24 IBM Visualization Data Explorer: User’s Reference

 Arrange

 Modules

= 1, the width of each column is set to the width of the widest
image in that column.

If the second (height) component:

= 0, the height of each row is set to the height of the tallest
image in the input group.
= 1, the height of each row is set to the height of the tallest
image in that row.

Thus a setting of [0, 0] will place each image in a box of the same
size, as determined by (1) the widest and tallest images present in
the input group or (2) by the value of size, if it is nonzero.

position specifies the placement of an image in an output block if the block
is larger than the image. A value of [0 0] would place it in the
lower left corner; [.5 .5], in the center; [1 0], in the lower right
corner; and so on.

size specifies, in pixels, the width or height of the block containing each
input image in the resulting image. This parameter overrides the
setting of the corresponding component of compact.

If size is less than the size of the largest image, it will default to the
size of the largest. That is, size cannot shrink or crop an image. If
a component of size is set to zero, the dimensions of the images in
that row or column are used to set the size of the output image
blocks, depending on the setting of compact.

If you want to filter or reduce an image, you must do so before arranging it together
with another image.

 Components
All input components are propagated to the output.

Example Visual Programs
PlotLine.net

UsingCompute.net

UsingFilter.net

SIMPLE/Arrange.net

IndependentlyArrange.net

IndependentlyArrange.net illustrates an interactive alternative to using Arrange.

 See Also
 Collect, Display, Overlay, Render

 Chapter 2. Functional Modules 25

 Attribute

 Attribute

 Category
Structuring

 Function
Extracts an attribute from an Object.

 Syntax
object = Attribute(input, attribute);

 Inputs
Name Type Default Description

input object none object from which the attribute is
obtained

attribute string "name" attribute name

 Outputs
Name Type Description

object object attribute value

 Functional Details
input is an Object with an attribute to be extracted.

attribute is the name of the attribute to be extracted.

There are various attributes which have definite meanings in Data Explorer (see
“Options” on page 224). You can also add your own attributes to objects. In
addition, some modules (RubberSheet, Isosurface, AutoGrid, Tube, Ribbon) add
attributes specifying the value of a particular value computed and used in creating a
realization.

Example Visual Program
UsingAttributes.net

 See Also
 Options, RubberSheet, Isosurface, AutoGrid, Tube, Ribbon

26 IBM Visualization Data Explorer: User’s Reference

 AutoAxes

 Modules

 AutoAxes

 Category
Annotation

 Function
Generates an axes box to enclose an object in the Image window.

 Syntax
axes = AutoAxes(input, camera, labels, ticks, corners, frame, adjust,

cursor, grid, colors, annotation, labelscale, font,
xticklocations, yticklocations, zticklocations,
xticklabels, yticklabels, zticklabels);

 Inputs
Name Type Default Description

input object none object to be enclosed

camera camera none viewpoint

labels string list no labels labels for axes

ticks integer or
integer list

15 the approximate number of
major tick marks (0 to suppress)

corners vector list or
object

input object bounds of axes

frame flag 0 0: only the frame of back faces
 drawn
1: entire frame drawn

adjust flag 1 0: end points not adjusted
1: end points adjusted to match
 tick marks

cursor vector no cursor cursor position

grid flag 0 0: grid lines not drawn
1: grid lines drawn

colors vector list or
string list

appropriate
color(s)

color(s) for annotation

annotation string list "all" annotation objects to be colored

labelscale scalar 1.0 scale factor for labels

font string standard font for labels

xticklocations scalar list appropriate set of x tick locations

yticklocations scalar list appropriate set of y tick locations

zticklocations scalar list appropriate set of z tick locations

xticklabels string list xticklocations x tick labels

yticklabels string list yticklocations y tick labels

zticklabels string list zticklocations z tick labels

 Chapter 2. Functional Modules 27

 AutoAxes

 Outputs
Name Type Description

axes color field the axes box plus the input

 Functional Details
If you are using the Image tool in the user interface, you should use the AutoAxes
option of the Options pull-down menu in the Image window, rather than the
AutoAxes module.

input is the object around which an axes box is to be generated.

camera is the camera used to render the object (using Display or Render).
The viewpoint determines which of the box edges AutoAxes creates
and which way the labels face.

labels specifies labels for the x, y, and z axes. If input has an “axis
labels” attribute, it is used as the default for labels. This attribute
can be imported with the original data or it can be added using the
Options module.

ticks can be an integer list, in which case it represents the approximate
number of tick marks to be used on each of the three axes. If you
specify ticks as a single integer, AutoAxes uses approximately that
many tick marks in total for all three axes.

corners specifies the extent of the axes. If this parameter is not specified,
the module automatically sizes the box to enclose the specified
input object. If it is specified as a list of two vectors, the module
uses the points specified rather than the bounds of input to
determine the extent of the axes. In that case, corners specifies
the end points of the diagonal of the axes (e.g., [Xmin, Ymin, Zmin]
and [Xmax, Ymax, Zmax]).

Alternatively, you can specify corners as an object, and the module
uses the bounds of that object to determine the size of the axes.
This feature is useful, for example, to enclose varying isosurfaces
based on a given data field. You can use the data field as the
corners parameter to keep the axes box a constant size, even
when the isosurface changes in size.

frame specifies the kind of frame to be placed around the object. By
default (frame = 0), the three back faces of the box (from the
viewpoint of camera) are opaque, serving as background. If frame =
1, the module draws the outlines of the other three faces of the box
as well.

adjust adjust the end points of the axes to end exactly at the tick marks.
The default is no adjustment.

cursor specifies the position for the placement of a cursor.

grid specifies grid lines drawn from the major tick marks.

colors specifies the color(s) of one or more components of the axes. It
can be a single color (RGB vector or name string) or a list of colors.
Color names can be any of the defined color-name strings (see
“Color” on page 75). Its effects are partly determined by the
annotation parameter.

28 IBM Visualization Data Explorer: User’s Reference

 AutoAxes

 Modules

If color is a single string and annotation is unspecified or is “all,”
then the specified color is used for all axes annotation. Otherwise,
the number of colors in colors must match the number of
annotation strings exactly and in a one-to-one correspondence.

annotation combines with color to specify the color of one or more
components of the axes. This parameter can be a single string or a
set of strings from the following list: “all,” “background,” “grid,”
“labels,” and “ticks.” You may remove the background by specifying
“background” and setting color to “clear.”

labelscale determines the size of the axes and tick-mark labels. For example,
labelscale = 2.0 will display the labels at double their default size.

font specifies the font for axes and tick-mark labels. The default for
axes is a variable-width font (“variable”), and for tick-marks a
fixed-width font (“fixed”).

area gothicit_t pitman roman_ext

cyril_d greek_d roman_d script_d

fixed greek_s roman_dser script_s

gothiceng_t italic_d roman_s variable

gothicger_t italic_t roman_tser

For more information, see Appendix E, “Data Explorer Fonts” on
page 307 in the IBM Visualization Data Explorer User’s Guide.

xticklocations
list of explicit locations for tick marks on the x-axis. If specified,
overrides the value as determined by the ticks parameter.

yticklocations
list of explicit locations for tick marks on the y-axis. If specified,
overrides the value as determined by the ticks parameter.

xticklocations
list of explicit locations for tick marks on the z-axis. If specified,
overrides the value as determined by the ticks parameter.

xticklabels list of labels to be associated with xticklocations. If xticklabels
is specified, and xticklocations is not specified, then
xticklocations defaults to the integers 0 to n-1 where n is the
number of items in xticklabels.

yticklabels list of labels to be associated with yticklocations. If yticklabels
is specified, and yticklocations is not specified, then
yticklocations defaults to the integers 0 to n-1 where n is the
number of items in yticklabels.

zticklabels list of labels to be associated with zticklocations. If zticklabels
is specified, and zticklocations is not specified, then
zticklocations defaults to the integers 0 to n-1 where n is the
number of items in zticklabels.

 Chapter 2. Functional Modules 29

 AutoAxes

Notes:

1. If you have applied scaling to your object using the Scale module, AutoAxes
disregards that scaling when labeling the axes. This allows you to display data
conveniently with an aspect ratio much different from 1, and still have correct
labels on the axes. AutoAxes only disregards the top-level transformation and
does not disregard the transformations of the Translate or Rotate module. (The
macro AutoScaleMacro in /usr/lpp/dx/samples/macros can be used just
before Image or AutoAxes to scale the object. See also How to Avoid
Stretching or Squashing Glyphs on page 41.) Because scaling is disregarded
if not done at the top level, you cannot have a Collect module following the
Scale module. For example, if you want to Collect a caption with an object,
you should use Scale after the Collect of the object with the caption.

2. If you are setting the corners parameter as a vector list, and the input object is
scaled, corners should be in units of the scaled object.

3. If corners is more restrictive than the given ticklocations, then the given
locations outside the corners are not shown.

4. If corners is less restrictive than the given ticklocations, or if corners is not
specified, then all given tick locations are shown, whether or not there is data
there.

5. If ticklocations is specified, then the data range determines the extent of the
axes, unless corners is specified, in which case the given corners are used.

6. You can change the point at which a change is made from fixed-format to
scientific notation for tick labels by setting the DXAXESWIDTH environment variable
(see “Other Environment Variables” on page 292 in IBM Visualization Data
Explorer User’s Guide).

Example Visual Programs
AutoAxesSpecifyTicks (as part of the Image tool)

GeneralImport1.net (as part of the Image tool)

SIMPLE/AutoAxes.net

 See Also
 Collect, Color, Options, Plot

30 IBM Visualization Data Explorer: User’s Reference

 AutoCamera

 Modules

 AutoCamera

 Category
Rendering

 Function
Constructs a camera for viewing an object.

 Syntax
camera = AutoCamera(object, direction, width, resolution,

aspect, up, perspective, angle, background);

 Inputs
Name Type Default Description

object object or
vector

none object to be looked at

direction vector, string,
or object

"front" position of camera

width scalar or
object

input
dependent

width of field of view

resolution integer 640 pixels across image

aspect scalar 0.75 height/width

up vector [0 1 0] up direction

perspective flag 0 0: orthographic projection
1: perspective projection

angle scalar 30.0 view angle (in degrees) (for
perspective projection)

background vector or
string

"black" image background color

 Outputs
Name Type Description

camera camera resulting camera

 Functional Details
This module differs from Camera in specifying a direction from which to view a
specified object. (Camera specifies a “look-from” point.) It will automatically create
an appropriate Camera for a given object for use with Display or Render.

object is the object for which a camera is to be created. You can specify
this parameter as a 3-dimensional position in space. In that case,
width must also be explicitly specified (see below) as a numeric
value, since the module has no means of estimating object size.

direction specifies the direction from the camera eye to the center of the
object and can be any of the following strings: “front,” “back,” “left,”
“right,” “top,” “bottom,” and their corresponding “off” values

 Chapter 2. Functional Modules 31

 AutoCamera

(“off-front,” “off-back,” etc., which are all slightly offset from the
direct positions). Hyphens and spaces are not required for the
offset (i.e., “offleft” and “off left” are both valid, and Data Explorer
ignores capitalization.

The direction “front” means from the positive z direction; “back”
means from the negative z direction; “left” means from the negative
x direction, “top” means from the positive y direction, and so on.

Note: This parameter controls only the direction of viewing; it does
not allow you inside the object. For interior views, use the
ClipPlane or ClipBox module, make the object translucent, or use
the Camera module in perspective mode.

This parameter can also be specified as a vector to be added to the
look-to point. You can use the Direction module for constructing
look-from directions. But note that only the direction of the
parameter is important; its magnitude does not affect the size of the
object in the image.

width specifies the width of the image in the units of object.

resolution specifies the width of the image in pixels.

aspect specifies the height-to-width ratio of the image.

up specifies a vector that will be aligned with the vertical axis of the
image. The default is [0 1 0].

perspective specifies the method of projection used in rendering object. The
choices are perspective (0) and orthographic (1).

Perspective projection
This method produces a realistic rendering of objects, but
does not preserve the exact shape and measurements of the
object (e.g., parallel lines usually do not project as being
parallel). The camera is positioned at the vertex of the
viewing angle (see angle below). The base of this angle is
determined by the width parameter. Thus the actual camera
position is determined by width and angle along the
direction vector.

Orthographic projection
This method produces a somewhat artificial view of an object
(the distance between the front and back of an object appears
small compared to the distance between the object and the
camera), but it preserves exact scale measurements and
parallel lines.

The angle parameter has no effect on orthographic projection.
The size of the object can be changed only by width (the
default is a field of view slightly greater than the width of the
object).

For more information on these projection methods, consult a text on
computer graphics.

angle specifies the viewing angle in degrees for perspective projection.

32 IBM Visualization Data Explorer: User’s Reference

 AutoCamera

 Modules

background specifies the color of the image background as either an RGB color
or a color-name string. The string can be any of the defined
color-name strings (see “Color” on page 75).

Example Visual Programs
MovingCamera.net

PlotLine.net

PlotTwoLines.net

UsingCompute.net

UsingMorph.net

 See Also
 Camera, Color, Direction, Render, Display

 Chapter 2. Functional Modules 33

 AutoColor

 AutoColor

 Category
Transformation

 Function
Automatically colors a field.

 Syntax
mapped, colormap = AutoColor(data, opacity, intensity, start, range,

saturation, min, max, delayed, outofrange);

 Inputs
Name Type Default Description

data data field none field to be colored

opacity scalar input
dependent

opacity, between 0 and 1

intensity scalar 1.0 color intensity

start scalar 0.6666 starting color (default = blue)

range scalar 0.6666 range of color (default = blue to
red)

saturation scalar 1 saturation, between 0 and 1

min scalar or data
field

min of data minimum of data to be colored

max scalar or data
field

max of data maximum of data to be colored

delayed flag 0 0: apply maps
1: delay applying color and

opacity maps (byte data only)

outofrange vector list or
string list

[.3 .3 .3] how to color out-of-range points

 Outputs
Name Type Description

mapped color field color-mapped input field

colormap field RGB color map used

 Functional Details
This module colors a specified field (data) by mapping hues to data values.

data is an input field with data. If the input is a vector field, the colors
are based on the magnitude of the data. If the input consists of
matrices, the colors are based on the determinants.

opacity specifies the opacity of the resulting object. Allowed values range
from 0 to 1. Its default value is 1 for surfaces and 0.5 for volumes.

34 IBM Visualization Data Explorer: User’s Reference

 AutoColor

 Modules

intensity scales the amount of color. For opaque surfaces, the parameter
scales from black (0) to full color (1). For volumes, it controls the
brightness of the object when viewed along its longest dimension.
Values greater than 1 can be used to brighten translucent surfaces
or volumes that appear too dim. See also “Coloring Objects for
Volume Rendering” on page 113.

start and start – range
specify the colors applied to the minimum and maximum data
values mapped. By default, the minimum data value is colored blue
(0.6666), and the maximum is colored red (0 or 1; colors are
defined cyclically from −∞ to ∞, so that a start of −1 = 0 =1, and
so on).

saturation specifies the saturation of the colors used. This value must be
between 0 and 1.

min and max specify the minimum and maximum data values mapped. If neither
is specified, the minimum and maximum values of data are
mapped. If min is scalar, the minimum data value is mapped to that
value. If min is a data field, the minimum data value of that field is
used.

The max parameter is interpreted in corresponding fashion. If min is
a data field and max is unspecified, the module uses the minimum
and maximum values of that field.

For volumes, regions with values outside the min-max range are
invisible; for surfaces, such regions are gray by default.

delayed determines whether “delayed colors” are created. Such colors are
available only for byte data and they use less memory.

When delayed = 1:

� The “colors” component is a pointer to the “data” component,
and a “color map” component is created. (This component is a
color lookup table with 256 entries, representing the appropriate
color for each of the 256 possible data values.)

� If opacity is also specified, an opacity map is created with 256
entries, while the “opacities” component is a copy of the “data”
component.

� The module adds a “direct color map” attribute to the output
object. (See “Using Direct Color Maps” on page 111.)

outofrange specifies the coloring of data that fall outside the min-max range.
This parameter applies only to surfaces; out-of-range data values
for volumes are always invisible. If the parameter value is a single
color (RGB vector or color-name string), it is applied to both the
upper and lower out-of-range points. If it is a list of two colors, then
it is applied to the lower and upper out-of-range points, respectively.
Color strings can be any of the defined color-name strings (see
“Color” on page 75) or either of strings “color of min” and “color of
max.”

 Chapter 2. Functional Modules 35

 AutoColor

Notes:

1. AutoColor adds colors to the “colors” component. For “front colors” or “back
colors,” use the Rename module following AutoColor. (See Appendix E, “Data
Explorer Fonts” on page 307, in IBM Visualization Data Explorer User’s Guide.)

2. This module also outputs the RGB color map used, in the output colormap.
The “positions” component contains the data values, and the “data” component
contains the corresponding RGB colors. You can use this color map as an
input to the ColorBar module. For byte data, the color map always contains
256 entries for the 256 possible data values. If the input to AutoColor is a
group, then a different color map will be constructed for each member of the
group. In that case, the colormap output of the module is a group of color
maps. Use the Select module to select the color map you want to display
using ColorBar.

3. If you AutoColor a group of volumes, you may find that the resulting image is
black because the renderer does not support coincident volumes.

 Components
Adds a “colors” component. An “opacities” component is added if opacity is less
than 1 or if the input data is a volume. If delayed = 1, the “colors” component is a
copy of the “data” component and a “color map” component is created. Similarly,
an “opacity map” component is created if opacity is less than 1 or the input is a
volume.

Example Visual Programs
Many example visual programs use AutoColor, including:

AlternateVisualizations.net

ContoursAndCaption.net

InvalidData.net

MappedIso.net

RubberTube.net

ThunderGlyphSheet.net

VolumeRendering.net

SIMPLE/Autocolor.net

 See Also
 Color, ColorBar, AutoGrayScale, Display

36 IBM Visualization Data Explorer: User’s Reference

 AutoGlyph

 Modules

 AutoGlyph

 Category
Annotation

 Function
Assigns an appropriate glyph to each point in a data field.

 Syntax
glyphs = AutoGlyph(data, type, shape, scale, ratio, min, max);

 Inputs
Name Type Default Description

data data field none set of points to which glyphs will
be assigned

type scalar, string,
field, or group

input
dependent

glyph type

shape scalar 1.0 factor to describe shape of glyph
(must be greater than 0)

scale scalar 1.0 scale factor for size of glyphs
(must be greater than 0)

ratio scalar 0.05 or 0 ratio in size (scalars or vectors)
between smallest and largest
glyphs (must be greater than or
equal to 0)

min scalar or field min of data
value or 0

data value that gets
minimum-size glyph

max scalar or field max of data data value that gets
maximum-size glyph

 Outputs
Name Type Description

glyphs color field set of glyphs

 Functional Details
This module creates a glyph, or representation (e.g., an arrow), for each data value
in a data field data. For data dependent on positions, a glyph is placed at the
corresponding position. For data dependent on connections, a glyph is placed at
the center of the corresponding connection element. If there is no “data”
component, a glyph is placed at each position.

The “base” size (i.e. size of a glyph for the average data value) is based on
AutoGlyph's estimate of an appropriate glyph size, as modified by scale.

For “text” glyphs, a “data” component is required.

 Chapter 2. Functional Modules 37

 AutoGlyph

AutoGlyph differs from the Glyph module in the interpretation of the scale
parameter. For AutoGlyph, you specify the size of the glyphs relative to the
default-size glyph chosen by AutoGlyph. In contrast, when using Glyph, you may
specify a scaling factor that is multiplied by the data value to obtain the size of the
glyph in world units.

data is the data field for which glyphs are to be created.

type specifies the kind of glyph to be used.

By default, scalar fields are represented by filled circles or spheres,
vector fields by arrows, tensor fields by groups of arrows, and string
data by text. For 2-dimensional scalar fields, the glyphs are circles,
and for 2-dimensional vector fields, the arrows are flat. For
3-dimensional fields, spheres or rounded arrows (rockets) are used.

The type parameter will override a default glyph. If type is a string,
it must specify one of the following: “arrow,” “arrow2D,” “circle,”
“colored text,” “cube,” “diamond,” “needle,” “needle2D,” “rocket,”
“rocket2D,” “sphere,” “speedy,” “spiffy,” “square,” “standard,” or
“text.” The value “standard” specifies the default glyph type and is a
medium-quality glyph appropriate to the data; “spiffy,” a
higher-quality glyph; and “speedy,” a lower-quality, but more quickly
rendered glyph. Lower quality glyphs also consume less memory.

You may alternatively specify type as a scalar value between 0 and
1, where:

� 0 is the same as “speedy”
� 1 is the same as “spiffy”
� 0.5 is the same as “standard”

There are approximately 5 different quality glyphs for each glyph
type. The one closest to the value specified is used.

Specifying “text” or “colored text” for type puts a text representation
of the data value at each point. For text glyphs, the text is by
default 15 pixels high, and the shape, ratio, min, and max
parameters have no effect. The scale parameter can be used to
increase or decrease the size of the text glyphs. For example,
specifying scale = 2 makes the text 30 pixels high. The difference
between “text” and “colored text” is that text is always white when
“text” is specified, but will be the color of the input if “colored text” is
specified. Note that after the AutoGlyph module, Color can be used
to color text glyphs to a different color if desired. The font for the
text glyphs can be specified by appending “font = fontname” to
“text” or “colored text,” where fontname is any of the defined fonts
supplied with Data Explorer:

area gothicit_t pitman roman_ext

cyril_d greek_d roman_d script_d

fixed greek_s roman_dser script_s

gothiceng_t italic_d roman_s variable

gothicger_t italic_t roman_tser

For more information, see Appendix E, “Data Explorer Fonts” on
page 307 in IBM Visualization Data Explorer User’s Guide. In
addition, you may supply user-defined fields and groups to the type
parameter (see 40).

38 IBM Visualization Data Explorer: User’s Reference

 AutoGlyph

 Modules

The remaining five parameters are interpreted somewhat differently, depending on
whether the type of data involved are (1) scalar or (2) vector or tensor.

 Scalar Data
shape is ignored for scalar data

scale sets the scale factor for the size of the glyphs relative to the default
glyph.

ratio controls the ratio between the smallest and the largest glyphs. The
default value is 0.05.

min and max are the data values used to set glyph sizes. Their default values
are the minimum and maximum data values respectively. Unless
you change ratio from its default value of 0.05, the glyphs
representing data with a value of min are 5 percent the size of the
glyphs representing data with a value of max. You can make the
size of the glyphs directly proportional to the data value by setting
both min and ratio to 0.

Data values smaller than min are colored pale pink, unless the
original positions already had colors, in which case the colors are
left unchanged. These data values are represented by glyphs of a
size proportional to
min – datavalue.

Vector and Tensor Data
shape is used to change the thickness of the glyph relative to its length.

The default value for shape is 1 (e.g., to make a glyph twice as
thick, set this parameter to twice the default value (i.e., to 2).

scale sets the scale factor for the size of the glyphs relative to the default
glyph.

ratio determines which data values are displayed. To display only those
values larger than 0.5 * max, set this parameter to 0.5. The default
value is 0.0.

min and max are the data values used to set glyph sizes.

For 3x3 symmetric tensor data three arrows are drawn,
representing the eigenvectors of the matrix. For 2x2 symmetric
tensor data two arrows are drawn, representing the eigenvectors of
the matrix. For vector data, one arrow is drawn, representing the
magnitude of the data. The default value of min is 0 (zero), and the
length of the glyphs is always directly proportional to the magnitude
of the data (or the magnitude of the eigenvector). If you set min to
a value greater than zero, all data with a magnitude smaller than
min are represented by a dot if type is “needle,” and by a small
sphere otherwise. This can be useful to weed out small and
perhaps noisy vectors. You can also set ratio to a value larger
than zero; in that case, all data with a magnitude smaller than
ratio × max is shown by a small sphere or dot. This allows you, for
example, to set ratio = 0.5 to see only those vectors with a
magnitude greater than half of max.

If you have vector data and want to show all the vectors as having
the same length, you can use the norm function in the Compute

 Chapter 2. Functional Modules 39

 AutoGlyph

module to normalize all the vectors to unit magnitude before
passing them to AutoGlyph.

You can also use a field as the input for min and max, in which case the statistics of
that field are used instead. If the input data is changing from frame to frame, and
you want to keep the glyph sizes consistent from frame to frame, you can use the
entire field or series as the input for min and max.

Note that if you set min and max, and there are data values far outside that range,
then it is possible to get very large glyphs. This is because max is used to set the
size scaling for the glyphs. Data values much larger in absolute value than max
have proportionally larger-sized glyphs.

User-supplied and Annotation Glyphs
You may also pass your own glyph in as type as the object to place at each data
point. The dimensionality of the positions of the glyph must be either 2-D or 3-D,
and the connections type must be “triangles” or “lines.” This glyph can be any Data
Explorer field (e.g., an imported object, an isosurface, or a constructed object).

There are two ways to use your own glyphs: as user-supplied glyphs and as
annotation glyphs.

User-supplied Glyphs

If you pass in a single field as type, that object is used as a glyph. It is drawn
large or small depending on the data value, and it inherits the color of the data
point, if present. The size of the object should be approximately unity for the
default sizing of AutoGlyph to work well. Glyphs for scalar fields should be
centered at the origin; glyphs for vector fields should have their base at the origin
and the end that you want to point in the direction of the vector field at (0, 1, 0);
that is, the glyph will be stretched along its y-dimension. You can use any
combination of Scale, Rotate, and Translate to scale, orient, and position your
template glyph before passing it to AutoGlyph.

Annotation Glyphs

If you pass in a group of objects as type, AutoGlyph interprets these as “annotation
glyphs.” Each object in the group must be a single field. It is assumed that you
want data values equal to zero to be represented by the zeroth glyph in the group,
data values equal to one to be represented by the first glyph in the group, and so
on.

Thus the data component of data in this case must be of the type integer, unsigned
integer, byte, unsigned byte, short, or unsigned short. The size of the glyph in the
resulting output will be the size of the glyph in the glyph group, modified by the
scaling factor scale. Colors and other components will be maintained from the
input glyphs to the output object, rather than from the colors of data. The shape,
ratio, min, and max parameters are ignored for annotation glyphs. Annotation
glyphs should be positioned at the origin. You can use any combination of Scale,
Rotate, and Translate to scale, orient, and position your template glyph before
passing it to AutoGlyph.

40 IBM Visualization Data Explorer: User’s Reference

 AutoGlyph

 Modules

 Components
Creates new “positions” and “connections” components. In the case of a 3-D glyph,
a “normals” component is added for shading purposes. All components that match
the dependency of the “data” component are propagated to the output; all others
are not. If the input has “binormals” and “tangent” components, they are not
propagated to the output.

Example Visual Programs
AnnotationGlyphs.net ThunderGlyphSheet.net

ConnectingScatteredPoints.net UsingGlyphs.net

PickStreamline.net UsingTextAndTextGlyphs.net

ProbeText.net SIMPLE/AutoGlyph.net

 See Also
 Glyph, Sample

How to Avoid Stretching or Squashing Glyphs

Users often use the Scale module to scale a collection of objects prior to
rendering, if the axes have very different scales. This can cause a problem if
the visualization includes glyphs, as the glyphs will be stretched or squashed as
well. You can place the Scale module before Glyph or AutoGlyph, but if you
want AutoAxes to show the original (rather than the scaled) position values, this
will not work. One way of solving this problem lies in the fact that Glyph and
AutoGlyph can accept a user-defined Glyph:

Give either module a “user-defined” glyph that is inversely squashed, so that
when you use Scale, the glyph ends up with the correct shape. Proceed as
follows:

� Create a field with a single point at the origin, using Construct ([0 0 0], data
= 0) for scalar (sphere) glyphs

� Feed this field to either module to make a single sphere or arrow.
� Now scale the glyph, using a scale factor that is the inverse of the one you

want to use on the entire data set. For example, if you are going to scale
your data by [1 1 .001], then scale the single glyph by [.001 .001 1].

� Feed this scaled glyph to the second parameter of the module, which puts
glyphs on all the data points. The module will use the squashed glyph as
its template. After the template is scaled by [1 1 .001], the glyphs won’t be
squashed anymore.

� A macro, UnsquishGlyphMacro.net, which performs this operation, can be
found in /usr/lpp/dx/samples/macros. This macro (and this technique)
works only for scalar data.

 Chapter 2. Functional Modules 41

 AutoGrayScale

 AutoGrayScale

 Category
Transformation

 Function
Automatically colors a field using a “gray” scale.

 Syntax
mapped, colormap = AutoGrayScale(data, opacity, hue, start, range,

saturation, min, max, delayed,
 outofrange);

 Inputs
Name Type Default Description

data data field none field to be colored

opacity scalar input
dependent

opacity (between 0 and 1)

hue scalar 0.0 hue

start scalar 0.0 starting intensity

range scalar 1.0 range of intensity

saturation scalar 0.0 saturation (between 0 and 1)

min scalar or data
field

min of data minimum of data to be colored

max scalar or data
field

max of data maximum of data to be colored

delayed flag 0 0: apply maps
1: delay applying color and
opacity maps (byte data only)

outofrange vector list or
string list

{“color of min,
” “color of
max”}

how to color out-of-range data
values

 Outputs
Name Type Description

mapped color field color-mapped input field

colormap field RGB color map used

 Functional Details
This module maps the intensities of a color (hue) to the data values of a specified
field (data).

data is an input field with data. If the input is a vector field, the
intensities are based on the magnitude of the data. If the input
consists of matrices, the intensities are based on the determinants.

42 IBM Visualization Data Explorer: User’s Reference

 AutoGrayScale

 Modules

opacity specifies the opacity of the resulting object. Allowed values range
from 0 to 1. Its default value is 1 for surfaces and 0.5 for volumes.

hue sets the hue. Blue is 0.6666, red is 0 or 1, and colors are defined
cyclically from −∞ to ∞ (i.e., hue of −1 = hue of 0 = hue of 1, and so
on).

Note: This parameter will have no effect if saturation is set to 0
(see below).

start and range
specify the intensities applied to the minimum and maximum data
values mapped. The value of range can be any positive number.
By default, the minimum data value has an intensity of 0, and the
maximum an intensity of 1. See also “Coloring Objects for Volume
Rendering” on page 113.

saturation specifies the saturation of the colors used. This value must be
between 0 (the default) and 1.

min and max specify the minimum and maximum data values mapped. If neither
is specified, the minimum and maximum values of data are
mapped. If min is scalar, the minimum data value is mapped to that
value. If min is a data field, the minimum data value of that field is
used.

The max parameter is interpreted in corresponding fashion. If min is
a data field and max is unspecified, the module uses the minimum
and maximum values of that field.

For volumes, regions with values outside the min-max range are
invisible; for surfaces, such regions are gray by default.

delayed determines whether “delayed colors” are created. Such colors are
available only for byte data and they use less memory.

When delayed = 1:

� The “colors” component is a pointer to the “data” component,
and a “color map” component is created. (This component is a
color lookup table with 256 entries, representing the appropriate
color for each of the 256 possible data values.)

� If opacity is also specified, an opacity map is created with 256
entries, while the “opacities” component is a copy of the “data”
component.

� The module adds a “direct color map” attribute to the output
object. (See “Using Direct Color Maps” on page 111.)

outofrange specifies the coloring of data that fall outside the min-max range.
This parameter applies only to surfaces; out-of-range data values
for volumes are always invisible. If the parameter value is a single
color (RGB vector or color-name string), it is applied to both the
upper and lower out-of-range points. If it is a list of two colors, then
it is applied to the lower and upper out-of-range points, respectively.
Color strings can be any of the defined color-name strings (see
“Color” on page 75) or either of the strings “color of min” and “color
of max.”

 Chapter 2. Functional Modules 43

 AutoGrayScale

Notes:

1. Directly displayed grayscale images will use more distinct colors if you take
advantage of direct color maps by using the delayed parameter. Use Compute
to convert your data to bytes if they are not already in that form.

2. AutoGrayScale adds colors to the “colors” component. For “front colors” or
“back colors,” use the Rename module following AutoGrayScale.

3. This module also outputs the RGB color map used, in the output colormap.
The “positions” component contains the data values, and the “data” component
contains the corresponding RGB colors. You can use this color map as an
input to the ColorBar module. For byte data, the color map always contains
256 entries for the 256 possible data values. If the input to AutoGrayScale is a
group, then a different color map will be constructed for each member of the
group. In that case, the colormap output of the module is a group of color
maps. Use the Select module to select the color map you want to display
using ColorBar.

4. If you AutoGrayScale a group of volumes, you may find that the resulting image
is black because the renderer does not support coincident volumes.

 Components
Adds a “colors” component. An “opacities” component is added if opacity is less
than 1 or the input data is a volume. If delayed = 1, the “colors” component is a
copy of the “data” component, and a “color map” component is created. Likewise,
an “opacity map” component is created if opacity is less than 1 or the input is a
volume.

Example Visual Program
AlternateVisualizations.net

 See Also
 Color, AutoColor, ColorBar

44 IBM Visualization Data Explorer: User’s Reference

 AutoGrid

 Modules

 AutoGrid

 Category
Realization

 Function
Maps scattered points onto a grid.

 Syntax
output = AutoGrid(input, densityfactor, nearest,
 radius,exponent,missing);

 Inputs
Name Type Default Description

input field or vector
list

none field with positions to regrid

densityfactor scalar or
vector

1.0 densityfactor for grid

nearest integer or
string

1 number of nearest neighbors to
use

radius scalar appropriate radius from grid point to consider

exponent scalar 1.0 weighting exponent

missing value no default missing value to be inserted if
necessary

 Outputs
Name Type Description

output field regridded field

 Functional Details
This module uses a specified set of scattered points (input) to assign data to every
position of a grid. This module differs from Regrid in that you do not supply a grid;
one is constructed automatically for you.

input should be either (1) a field with a 1-, 2-, or 3-dimensional “positions”
component or (2) a list of 1-, 2-, or 3-dimensional vectors. In the
second case, the vectors are interpreted as positions.

densityfactor specifies how to modify the automatically generated grid. By default
the automatically generated grid will have approximately as many
points as there are points in input, and each cell will be square. If
densityfactor is a single scalar value, then there will be
densityfactor times as many cells in each dimension. If
densityfactor is a vector, then you can modify the number of cells
in each dimension differentially.

nearest must be an integer or the string “infinity.” An integer value specifies
the number of nearest points (to each grid point) to be used in
computing an average data value for that grid point.

 Chapter 2. Functional Modules 45

 AutoGrid

radius By default, only those points within an automatically computed
radius will be considered when assigning data values to grid
positions. This automatically computed radius is twice the largest
dimension of a cell in the grid. You can explicitly set the radius to a
value measured in the units of the “positions” component of input.
If you specify radius=“infinity”, then no cutoff in distance will be
used; all points will contribute to the result at each grid point.

AutoGrid attaches a “AutoGrid radius” attribute to output, with a
value equal to the radius used, or the string “infinity”.

exponent The averaging method is a weighted average. The expression for
this average is 1/radius(exponent). The default value is 1.0, reducing
the expression to the reciprocal of the radius.

missing is used when radius is set to a value other than “infinity.” The
parameter specifies how to treat those grid points for which no
points in input occur within the specified radius.

If missing is not set, the module creates an “invalid positions”
component, and grid points with no assigned data value are
invalidated. If missing is set, the data value is inserted for the
missing data values. It must match the data component of input in
rank, type, and shape.

All components that are position-dependent are treated in the same
way as the “data” component.

 Components
Adds a “connections” component. The “positions” and “connections” components
are those of grid while all components in input that depend on “positions” will be
present in the output, modified by averaging.

Example Visual Programs
SIMPLE/AutoGrid.net

ConnectingScatteredPoints

 See Also
Connect, Regrid, Include

46 IBM Visualization Data Explorer: User’s Reference

 Band

 Modules

 Band

 Category
Realization

 Function
Divides a specified field into bands.

 Syntax
band = Band(data, value, number, remap);

 Inputs
Name Type Default Description

data scalar field none field to be divided

value scalar or
scalar list

data mean band divisions

number integer no default number of divisions

remap string "low" data values applied to bands

 Outputs
Name Type Description

band field or group divided input

 Functional Details
The values used for dividing a field into bands are specified by value or number.

data is the field to be divided and must have 2-dimensional connections
(triangles or quads).

value specifies the value(s) at which the divisions are to be created (i.e.,
the data values in the data field). If this parameter and number (see
below) are both unspecified, the module, by default, constructs the
division at the arithmetic mean of the data set.

number specifies the number of equal divisions to be created between the
minimum (min) and maximum (max) data values of the field. The
first division is created at min + delta, the second at min + 2 * delta,
and the last at max − delta, where delta = (max−min)/(number+1).

Note: This parameter is ignored if value is specified.

remap assigns data values to the elements in each band:

“low” specifies that all connection elements are assigned the
value of the lower boundary of the band (the lowest data
value if it is the first band).

“high” specifies that all connection elements are assigned the
value of the upper boundary of the band (the largest
data value if it is the last band).

“original” specifies that the data values remain unchanged.

 Chapter 2. Functional Modules 47

 Band

 Components
This module creates new “positions” and “connections” components, and adds a
“colors” component if one is not already present. The “data” component is modified
according to the value of remap. The output data are connection dependent.

Example Visual Programs
AlternateVisualizations.net

BandedColors.net

InvalidData.net

SIMPLE/Band.net

 See Also
 Isosurface

48 IBM Visualization Data Explorer: User’s Reference

 Camera

 Modules

 Camera

 Category
Rendering

 Function
Constructs a camera for viewing an object.

 Syntax
camera = Camera(to, from, width, resolution, aspect, up,

perspective, angle, background);

 Inputs
Name Type Default Description

to vector or
object

[0 0 0] look-to point

from vector or
object

[0 0 1] position of camera

width scalar or
object

100 width of field of view (for
orthographic projection)

resolution integer 640 horizontal resolution of image (in
pixels)

aspect scalar 0.75 height/width

up vector [0 1 0] up direction

perspective flag 0 0: orthographic projection
1: perspective projection

angle scalar 30.0 view angle (in degrees) (for
perspective projection)

background vector or
string

"black" image background color

 Outputs
Name Type Description

camera camera resulting camera

 Functional Details
This module differs from AutoCamera in that it specifies a “look-from” point for
viewing an object (AutoCamera specifies a direction from which to view an object).

to specifies a point in the scene that appears at the center of the
image; the default is the origin of world space. This parameter can
also be specified as an object, in which case the center of the
object serves as the look-to point.

Note: This parameter cannot have the same value as from (see
below).

 Chapter 2. Functional Modules 49

 Camera

from specifies the location of the camera; the default is [0 0 1]. This
parameter can also be specified as an object, in which case its
value is the center of the object’s bounding box.

Note: This parameter cannot have the same value as to (see
above).

width functions only for an orthographic projection (see perspective
below). It specifies the width of the field of view, in world
coordinates. If this parameter is specified as an object, the module
uses a value that is slightly larger than the diagonal of the object’s
bounding box.

resolution specifies the width of the image in pixels.

aspect specifies the height-to-width ratio of the image.

up specifies a vector that will be aligned with the vertical axis of the
image.

perspective specifies the method of projection used in rendering object:
perspective (0) or orthographic (1).

Perspective projection
This method produces a realistic rendering of objects, but
does not preserve their exact shape and measurements (e.g.,
parallel lines usually do not project as being parallel). The
camera is positioned at the vertex of the viewing angle (see
angle below). The two end-points of that angle are the left
and right sides of the image area. Thus the wider the angle,
the greater the amount of object space that can be fitted into
the viewing area.

Note: The width parameter has no effect on perspective
projection.

Orthographic projection
This method produces a somewhat artificial view of an object
(the distance between the front and back of an object appears
small compared to the distance between the object and the
camera), but it preserves exact scale measurements and
parallel lines. The size of the object can be changed only by
width (the default is a field of view slightly greater than the
width of the object).

The angle parameter has no effect on orthographic projection.

In orthographic projection, only the direction of the from-to
vector is important, not its magnitude. The object’s distance
does not affect its size in the image, which can be changed
only with the width parameter. In perspective projection, the
object’s size can be changed only by changing from or angle
(because width is ignored).

For more information on these projection methods, consult a text on
computer graphics.

angle specifies the viewing angle in degrees. The vertex of this angle is
to.

50 IBM Visualization Data Explorer: User’s Reference

 Camera

 Modules

background specifies the color of the image background as either an RGB color
or a color-name string. The string can be any of the defined
color-name strings (see “Color” on page 75).

Example Visual Programs
FlyThrough.net (uses the macro InterpolatePositionsMacro.net)

FlyThrough2.net

 See Also
 AutoCamera, AutoColor, Direction, Render

 Chapter 2. Functional Modules 51

 Caption

 Caption

 Category
Annotation

 Function
Displays a caption on the screen.

 Syntax
caption = Caption(string, position, flag, reference,

alignment, height, font, direction, up);

 Inputs
Name Type Default Description

string string or string
list

none the caption to be displayed

position vector [0.5 0.05] where to display the caption

flag flag 0 0: viewport-relative coordinates
1: pixel coordinates

reference vector same as
position

reference point on caption

alignment scalar input
dependent

range:
0.0: left-justify
...
1.0: right-justify

height integer 15 caption height (pixels)

font string "variable" caption font

direction vector [1 0] direction of baseline

up vector perpendicular
to baseline

direction of vertical strokes

 Outputs
Name Type Description

caption color field string object that can be rendered

 Functional Details
The caption produced is aligned in parallel with the screen.

string is the caption to be displayed. This parameter can also be a list of
strings, for a multiline caption. Alternatively, you can separate
substrings for a multiline caption by using \n.

position specifies the position of the caption in units determined by flag
(see below).

52 IBM Visualization Data Explorer: User’s Reference

 Caption

 Modules

flag determines the type of coordinates used in placing the caption:

 0: viewport-relative

 1: pixel

reference specifies the reference point for the caption that is to be placed at
position:

[0 0] = bottom left of the caption
[1 1] = top right

If flag = 0, the default is the same as the current specification of
position.

If flag = 1, the default is the lower left corner of the caption.

alignment determines the alignment of a multiline caption from left justified
(0.0) to right justified (1.0). For intermediate values, justification is
defined by linear interpolation (e.g., a value of 0.5 centers the lines).

height determines the height of the caption characters in pixels. A
negative value generates an inverted caption.

font specifies the font for a displayed caption. You can specify any of
the defined fonts supplied with Data Explorer. These include a
variable-width font (“variable,” the default) and a fixed-width font
(“fixed”):

area gothicit_t pitman roman_ext

cyril_d greek_d roman_d script_d

fixed greek_s roman_dser script_s

gothiceng_t italic_d roman_s variable

gothicger_t italic_t roman_tser

For more information, see Appendix E, “Data Explorer Fonts” on
page 307 in the IBM Visualization Data Explorer User’s Guide.

direction determines the orientation of the caption (i.e., the direction of its
baseline).

up determines the direction of the vertical strokes of the caption font.

Notes:

1. To change the color of a caption, use the Color module (see “Color” on
page 75).

2. If you are using Render or Display to render an object which contains a
caption, when you change the resolution of the camera the size of the caption
in pixels will not change. If you want the caption to take up the same proportion
of the image, use the ScaleScreen module to change the size of the caption.

 Components
Creates “positions,” “connections,” and “colors” components.

Example Visual Programs
Many example visual programs use Caption, including:

 Chapter 2. Functional Modules 53

 Caption

AlternateVisualizations.net

ContoursAndCaption.net

Sealevel.net

UsingAttributes.net

UsingIsosurface.net

SIMPLE/Caption

SIMPLE/ScaleScreen.net

 See Also
 Color, Format, Text, ScaleScreen, Legend

54 IBM Visualization Data Explorer: User’s Reference

 Categorize

 Modules

 Categorize

 Category
Transformation

 Function
Categorizes components of a field

 Syntax
output = Categorize(input, name);

 Inputs
Name Type Default Description

input field none field to categorize

name string or string
list

“data” component to categorize

 Outputs
Name Type Description

output field with additional lookup components

 Functional Details
input is the field containing the components to categorize

name is the name or names of the components to categorize

The Categorize module converts a component of any type to an integer array that
references a newly created “lookup” component, which is a sorted list of the unique
values in the original component. This serves to

1. reduce the size of a component that contains duplicate values,
2. allow conversion of string or vector data to “categorical” data,
3. detect repeated values in a component, and
4. create a sorted list of the unique values in a component for inspection.

Each component that is categorized will yield its own lookup component named
“compname lookup”, where compname is the name of the categorized component.

For example, if the component name is “state” and its values are {“MO”, “CA”,
“MO”, “NH”, “AK”, “NH”} then Categorize(field, “state”) would convert component
state to: {2, 1, 2, 3, 0, 3} and produce a new component, “state lookup” containing
the values {“AK”, “CA”, “MO”, “NH”}.

 Chapter 2. Functional Modules 55

 Categorize

Notes:

1. Categorize works on scalar, string, or vectors of any type, with the lookup
component sorted in order of x, y, z, ... If the lookup component has fewer
items than the original component, then there are duplicate values in the
original component. If the lookup component has 256 or fewer items, the
categorized component will be of type unsigned byte; otherwise it will be of
type int.

2. Categorical data can be converted back to its original values using either the
Lookup module or Map. If the lookup component is of type string, it can be
input as the labels parameter of Plot, ColorBar, or AutoAxes to label the
values 0, 1, .. n-1 with the corresponding strings. This helps automate the
labelling of categorical plots. Data imported by ImportSpreadsheet can be
categorized on import directly by specifying the components to categorize.
Statistics on the categorized component, and another associated component,
can be found with CategoryStatistics. Include can be used to remove data by
category.

 Components
Modifies the components specified by name, replacing it by a list of indices. Adds a
new component with the name “name lookup” which is a lookup table for component
name.

Example Visual Programs
Duplicates.net

Categorical.net (Categorize is called on import by ImportSpreadsheet)

 See Also
CategoryStatistics, ImportSpreadsheet

56 IBM Visualization Data Explorer: User’s Reference

 CategoryStatistics

 Modules

 CategoryStatistics

 Category
Transformation

 Function
Calculate statistics on data associated with a categorical component

 Syntax
statistics = CategoryStatistics(input, operation, category, data, lookup);

 Inputs
Name Type Default Description

input field (none) field for which to compute
statistics

operation string “count” operation to perform (“count”,
“mean”, “sd”, “var”, “min”, “max”)

category string “data” component with categorical
values

data string “data” data component for statistics

lookup integer, string,
value list

“category
lookup”

lookup component

 Outputs
Name Type Description

statistics field field with data containing the statistics and
positions for the category values

 Functional Details
input field containing the categorical and data components

operation calculation to perform

category component with categorical values. This component must be an
integer type (int, ubyte, ...)

data data component for statistics. This component must be scalar.

lookup lookup component (optional)

CategoryStatistics calculates statistics on a scalar component associated with a
categorical component. If the operation is “count”, the data component is ignored
and the number of counts in each category is calculated, corresponding to a
histogram of the unique values in the categorized component.

For example, if input is a Field with component “state” containing the entries
{1,0,1,2,3}, component “state lookup” containing the entries {“CA”, “NY”, “PA”,
“VA”}, and a component “sales” containing the entries {1.2,1.0,1.4,1.7,1.8}, then
CategoryStatistics(input,“mean”,“state”,“sales”) will produce an output field where
the “positions” component will contain the indices {0,1,2,3} and the “data”

 Chapter 2. Functional Modules 57

 CategoryStatistics

component will contain the mean value for sales for each state, that is
{1.0,1.3,1.7,1.8}.

The output of CategoryStatistics is a field with a “positions” component
corresponding to the categorical indices, and a “data” component corresponding to
the requested statistics. The “positions” component will consist of the integers 0 to
N-1, where N can be determined in a number of ways:

� If no lookup component is specified, and if a “categoryname lookup” component
is not found, (where “categoryname” is the string specified by category), then
the output field will simply have positions from 0 to MAX_N, where MAX_N is
the maximum integer found in the category component.

� If, on the other hand, a “categoryname lookup” component is found, or lookup
is specified, then the number of category bins will be the number of items in
lookup. lookup can also simply be an integer specifying the number of
category bins.

� If a lookup table is provided, then for convenience, a “categoryname lookup”
component will be placed in the output containing the values corresponding to
the categorical indices.

 Components
Creates an output field with a “positions” component representing the categorical
indices, and a “data” component containing the requested statistics. Creates a
“categoryname lookup” component if a lookup table is specified using the lookup
parameter.

Example Visual Programs
Duplicates.net

Zipcodes.net

 See Also
Categorize, Statistics, Lookup

58 IBM Visualization Data Explorer: User’s Reference

 ChangeGroupMember

 Modules

 ChangeGroupMember

 Category
Structuring

 Function
Insert, rename, or delete a member of an existing group

 Syntax
changed = ChangeGroupMember(data, operation, id, newmember, newtag);

 Inputs
Name Type Default Description

data group none input group object

operation string none how to alter the group member

id integer none index or name of existing group
member

newmember object operation
dependent

new or replacement group
member

newtag scalar or
string

no default new series position or member
name

 Outputs
Name Type Description

changed group group with one member changed

 Functional Details
This module allows you to replace or insert a member of an existing group.

data is the group to be modified

operation is the operation to perform on the specified member of data. If
data is a series group, then operation must be one of “insert
before”, “replace”, “insert after”, or “delete”. If data is any other kind
of group, then operation must be one of “insert”, “replace”, “delete”.
Note that for most applications, the order of members in a group is
not important, and the order of members in a group is not
guaranteed to be maintained by modules in Data Explorer unless
the group is a Series.

id is the index (from 0 to n-1, where n is the number of members of
data) or name of an existing member of data

newmember is the new or replacement object to be placed in data

newtag is the series position or member name for newmember. If data is a
series, this parameter is required.

 Chapter 2. Functional Modules 59

 ChangeGroupMember

 Components
This module does not modify any components of the input data.

Example Visual Programs
ManipulateGroups.net

 See Also
ChangeGroupType, Collect, CollectSeries, CollectNamed, CollectMultiGrid

60 IBM Visualization Data Explorer: User’s Reference

 ChangeGroupType

 Modules

 ChangeGroupType

 Category
Structuring

 Function
Changes the group type

 Syntax
changed = ChangeGroupType(data, newtype, idlist);

 Inputs
Name Type Default Description

data group (none) input group object

newtype string (none) type for output group

idlist scalar list or
string list

input
dependent

series positions or member
names

 Outputs
Name Type Description

name type description

changed group different type of group with same
members as input

 Functional Details
ChangeGroupType allows you to change the group type of an input object, for
example, change a generic group to a series, or change a series to a multigrid. The
output group changed will contain the same members as the input group data. You
can also use this module to change the series positions of a Series group.

data is the input group to be changed.

newtype is the type for the output group. It must be one of “series”,
“multigrid”, or “generic”. Note that any combination of objects can be
placed in a generic group, but there are restrictions on the objects
which can be placed in a series or multigrid. In these cases, all the
members must have the same data type and connection type.

idlist is the list of series positions or list of member names. The number
of items in this list, if given, must be the same as the number of
members in data. This parameter is optional. If you are changing
the group type to series and do not provide this parameter, the
members of the series will automatically be given series positions 0,
1, ..., n-1, where n is the number of members in data.

 Chapter 2. Functional Modules 61

 ChangeGroupType

 Components
This module does not change any components of the input object. It changes only
the group type.

Example Visual Programs
ManipulateGroups.net

 See Also
ChangeGroupMember, Collect, CollectSeries, CollectNamed, CollectMultiGrid

62 IBM Visualization Data Explorer: User’s Reference

 ClipBox

 Modules

 ClipBox

 Category
Rendering

 Function
Prepares a specified object for clipping by a box.

 Syntax
clipped = ClipBox(object, corners);

 Inputs
Name Type Default Description

object object none object to be clipped

corners vector list or
object

no clipping corners specifying clipping box

 Outputs
Name Type Description

clipped object object marked for clipping

 Functional Details
This module constructs an object so that it can be clipped by a box. Data Explorer
renders only the portion of the object that lies in this clipping box, which is defined
by corners (see below).

object is the object to be clipped.

corners defines the clipping box in one of two ways:

by specifying two of its corners with a vector list (of two
vectors). The module interprets the two vectors as opposite
corners of the clipping box.
by using the bounding box of the specified object (when
corners itself specifies an object).

Notes:

1. The specified object must be of a kind for which a bounding box can be
constructed. Otherwise an error results. In general, bounding boxes can be
constructed for all geometric objects, but not for objects such as captions.

2. All translucent objects in the scene should be clipped by the same object. In
addition, objects can be clipped by only one clipping box or one clipping plane.

3. The effect of ClipBox occurs during rendering, and its use does not affect the
behavior of modules upstream from the renderer. For example, ShowBox will
draw a box around the unclipped object.

 Chapter 2. Functional Modules 63

 ClipBox

 Components
All input components are propagated to the output.

 See Also
 ClipPlane

64 IBM Visualization Data Explorer: User’s Reference

 ClipPlane

 Modules

 ClipPlane

 Category
Rendering

 Function
Prepares an object for clipping by a plane.

 Syntax
clipped = ClipPlane(object, point, normal);

 Inputs
Name Type Default Description

object object none object to be clipped

point vector center of
object

a point on the clipping plane

normal vector [0 0 1] perpendicular to the clipping
plane

 Outputs
Name Type Description

clipped object object marked for clipping

 Functional Details
This module constructs an object so that it can be clipped by an infinite plane.
Data Explorer renders only the portion of the object that lies on the side opposite
that pointed to by normal (see below).

object is the object to be clipped.

point, specifies a point in the clipping plane. This specification, together
with normal, defines the clipping plane. The default is the center of
the object to be clipped.

normal specifies a normal to the clipping plane. This normal projects to the
side of the plane that is to be clipped. All parts of the specified
object that lie on the opposite side are retained.

Notes:

1. The specified object must be of a kind for which a bounding box can be
constructed. Otherwise an error results. In general, bounding boxes can be
constructed for all geometric objects, but not for, say, captions.

2. All translucent objects in the scene should be clipped by the same object. In
addition, objects can be clipped by only one clipping plane or one clipping box.

3. The effect of ClipPlane occurs during rendering, and its use does not affect the
behavior of modules upstream from the renderer. For example, ShowBox will
draw a box around the unclipped object.

 Chapter 2. Functional Modules 65

 ClipPlane

 Components
All input components are propagated to the output.

Example Visual Program
UsingClipPlane.net

 See Also
 ClipBox

66 IBM Visualization Data Explorer: User’s Reference

 Collect

 Modules

 Collect

 Category
Structuring

 Function
Collects objects into a group.

 Syntax
group = Collect(object, ...);

 Inputs
Name Type Default Description

object object no default object to be collected

... more objects to be collected

 Outputs
Name Type Description

group group the group of objects

 Functional Details
This module creates a group from a set of input objects.

object is an object to be placed in a group.

Note that fields placed in the generic group created by the module retain their
individuality. For example, AutoColor colors each field in the group based on its
own minimum and maximum data values; and Sample samples each field
individually. These examples contrast with the composite fields created by Partition
and the multigrid field created by CollectMultigrid.

The Collect module adds objects to the group without assigning them names. Use
the Select module to select an object from the group by number, where the first
object is number 0.

If Collect is called without parameters—Collect()—then the output is an empty
group.

A single module can collect a maximum of 21 objects. In the user interface, the
default number of enabled tabs is two. However, tabs can be added and removed
with the appropriate Input/Output Tab options in the Edit pull-down menu of the
VPE.

 Components
All input components are propagated to the output.

 Chapter 2. Functional Modules 67

 Collect

Example Visual Programs
Nearly every example visual program uses Collect.

 See Also
 Append, CollectMultiGrid, CollectNamed, CollectSeries, Select

68 IBM Visualization Data Explorer: User’s Reference

 CollectMultiGrid

 Modules

 CollectMultiGrid

 Category
Structuring

 Function
Collects objects together in a multigrid group.

 Syntax
multigrid = CollectMultiGrid(object, name, object, name, ...);

 Inputs
Name Type Default Description

object object (no default) object to be collected

name string (no default) name of object

... additional object-name pair(s)

 Outputs
Name Type Description

multigrid group the output multigrid

 Functional Details
The CollectMultiGrid module creates a Multigrid group from specified objects. The
data and connection types of each Field in the Multigrid must be the same.

object is an object to be placed in the group.

name is an optional parameter for specifying the name of an object in the
multigrid group. For example, the Select module could be used to
select a member by name.

Data Explorer modules treat a Multigrid group as a single entity. The positions may
be disjoint or overlapping. If they overlap, the “invalid positions” and “invalid
connections” components can be used to identify the valid positions in a given
region (see “Invalid Positions and Invalid Connections Components” on page 23 in
IBM Visualization Data Explorer User’s Guide.)

A single CollectMultiGrid module can collect up to 21 objects together in a group.
In the user interface, the default number of enabled parameter pairs (i.e., object
and name) is two. Tabs can be added to the module icon and removed with the
appropriate Input/Output Tab options in the Edit pull-down menu of the VPE.

 Components
All components are propagated to the output.

 Chapter 2. Functional Modules 69

 CollectMultiGrid

 See Also
 Append, CollectMultiGrid, CollectNamed, CollectSeries, Select

70 IBM Visualization Data Explorer: User’s Reference

 CollectNamed

 Modules

 CollectNamed

 Category
Structuring

 Function
Collects named objects together in a group.

 Syntax
group = CollectNamed(object, name, ...);

 Inputs
Name Type Default Description

object object none object to be collected

name string none name of object

... additional object-name pair(s)

 Outputs
Name Type Description

group group the group of objects

 Functional Details
This module creates, from specified objects, a group of named members.

object is an object to be placed in the group.

name is the name to be associated with the preceding object. Each name
must be unique.

The input parameters object and name must be paired. Objects can then be
selected from the group by name or by number (see “Select” on page 291).

Note that fields placed in the generic group created by the module are treated
individually (compare CollectMultiGrid). For example, AutoColor colors each field in
the group according to the minimum and maximum data values of that field, and
Sample samples each field individually.

A single CollectNamed module can collect up to 21 objects together in a group.
The default number of enabled parameter pairs (i.e., object, name) is two. (Tabs
can be added to the module icon and removed with the appropriate ...Input Tab
options in the Edit pull-down menu of the VPE.)

 Components
All input components are propagated to the output.

 Chapter 2. Functional Modules 71

 CollectNamed

 See Also
 Append, Collect, CollectMultiGrid, CollectSeries, Select

72 IBM Visualization Data Explorer: User’s Reference

 CollectSeries

 Modules

 CollectSeries

 Category
Structuring

 Function
Collects objects into a series.

 Syntax
series = CollectSeries(object, position, ...);

 Inputs
Name Type Default Description

object object no default object to be collected

position scalar no default series position of object

... additional object-position pair(s)

 Outputs
Name Type Description

series series the output series

 Functional Details
This module creates a series group from specified objects (e.g., a time series from
a set of fields). The data and connections types of each field in the series must be
the same.

object is an object to be placed in the series

position specifies the series position (e.g., time tag) of the preceding object

A single CollectSeries module can have up to 21 object,position pairs. The
default number of enabled parameter pairs (i.e. object,position) is two. (Tabs
can be added to the module icon and removed with the appropriate ...Input Tab
options in the Edit pull-down menu of the VPE.)

The input parameters object and position must be paired. Note that items placed
in a series can be selected only by ordinal number, not by series position.

A single CollectSeries module can collect up to 21 objects together in a group. The
default number of enabled parameter pairs (i.e., object, position) is two. (Tabs
can be added to the module icon and removed with the appropriate ...Input Tab
options in the Edit pull-down menu of the VPE.)

 Components
All input components are propagated to the output.

 Chapter 2. Functional Modules 73

 CollectSeries

Example Visual Programs
ManipulateGroups.net

UsingCompute3.net

UsingStreakline.net

 See Also
 Append, Collect, CollectMultiGrid, CollectNamed, Select, Stack

74 IBM Visualization Data Explorer: User’s Reference

 Color

 Modules

 Color

 Category
Transformation

 Function
Colors a field.

 Syntax
colored = Color(input, color, opacity, component, delayed);

 Inputs
Name Type Default Description

input field none field to be colored

color field or vector
or string

no color
added

RGB color

opacity field or scalar input
dependent

opacity

component string "colors" component to be colored

delayed flag 0 0: apply maps
1: delay applying color and

opacity maps (byte data
 only)

 Outputs
Name Type Description

colored color field color-mapped input field

 Functional Details
This module adds a specified color to a specified input object.

input is the field to be colored.

color specifies how the input field is to be colored. The specification can
be the vector value of an RGB color, a string, or a color map.

If color is an RGB color, the value should be in the range of 0–1
(but see “Coloring Objects for Volume Rendering” on page 113).
The Convert module can convert HSV (hue, saturation, and value)
colors to RGB.

If color is a string, that string should come from a lookup table,
which can be specified by setting the DXCOLORS environment
variable or by using the -colors flag with the dx command. If no
table is specified, Data Explorer will search (in the order shown) for
one of the following:

1. the file colors.txt in DXROOT/lib
2. the same file in /usr/lpp/dx/lib (if this was not the setting for

DXROOT). Note that the colors in this file correspond to the X

 Chapter 2. Functional Modules 75

 Color

Window System** color list, except that the Data Explorer colors
are squared first (see Appendix F, “Data Explorer Colors” on
page 313 in IBM Visualization Data Explorer User’s Guide).

When entering the names of colors, note that the module:

� accepts spaces in names.
 � ignores capitalization.
� accepts the spellings gray and grey.

If color is a color map it can be the output of the Colormap Editor
(the first output) or an imported color map. Note also that if this
parameter is a color map (as opposed to a single color), then the
input parameter must contain a “data” component; if the “data”
component consists of vector data, the color and opacity mapping
are based on the magnitude of the data. If this parameter is an
imported .cm file (see “Import” on page 165), the color-map part of
the color-opacity map is extracted and used.

Omitting the color specification allows you to change the opacity of
an object without modifying its color (see page 76 for a description
of a color map).

A well-formed color map should contain a 1-dimensional “positions”
component and a 3-dimensional “data” component. As with any
map in Data Explorer, the “positions” component represents the
domain in which to look up values, and the “data” component
represents the range, that is, the values which are associated with
items in the “positions” component.

Color maps can specify either smoothly varying colors or constant
colors across a set of ranges of data values. If the color map has
position-dependent data, then linear interpolation will be used to
derive colors for data values in the data field between those given
in the “positions” component of the map (see Figure 1 on page 77).

76 IBM Visualization Data Explorer: User’s Reference

 Color

 Modules

Figure 1. Position-dependent colormaps. In this figure a diagram of a data field is shown.
One of the data values, 3.5, has been indicated. The field structure is also shown, with
“positions”, “data”, and “connections” components. When a color map is applied to this field
using the Color module, the data value 3.5 is used as a lookup value into the “positions”
component of the color map. The color map has a “data” component which is dependent on
(in a one-to-one correspondence with) the “positions” component. The color map contains
colors for the value 3 (the RGB value [0 1 1], or cyan) and for the value 4 (the RGB value [0
0 0], or black). Data Explorer interpolates between these two colors to derive the color [0 .5
.5], or dark cyan, which is then placed in the “colors” component of the data field as the color
corresponding to the data value 3.5.

3.5

Color Map Field

"positions" "data" "connections"

1.0
1.5
3.0
4.0

1 0 0
1 1 0
0 1 1
0 0 0

Data Field

"positions" "data" "connections"

...
x, y
...

...
3.5
...

...

(New) Data Field

"positions" "data" "connections"

...
x, y
...

...
3.5
...

...

0 1
1 2
2 3

"colors"

...
0 .5 .5
...

Data Field

data are dependent on positions

If the colormap has connection-dependent data, then the color for
any data value in the data field between two values in the
“positions” component of the map will be constant (see Figure 2 on
page 78).

 Chapter 2. Functional Modules 77

 Color

Figure 2. Connection-dependent colormaps. In this figure a diagram of a data field is
shown. One of the data values, 3.5, has been indicated. The field structure is also shown,
with “positions”, “data”, and “connections” components. When a color map is applied to this
field using the Color module, the data value 3.5 is used as a lookup value into the “positions”
component of the color map. The color map has a “data” component which is dependent on
(in a one-to-one correspondence with) the “connections” component. The color map
contains colors for the range 1 to 1.5 (the RGB value [1 1 0], or yellow), the range 1.5 to 3
(the RGB value [0 1 1], or cyan) and for the range 3 to 4 (the RGB value [0 0 1], or blue).
Since 3.5 lies in the range 3 to 4, Data Explorer looks up the color [0 0 1] and places it in
the “colors” component of the data field as the color corresponding to the data value 3.5.

3.5

Color Map Field

"positions" "data" "connections"

1.0
1.5
3.0
4.0

1 1 0
0 1 1
0 0 1

Data Field

"positions" "data" "connections"

...
x, y
...

...
3.5
...

...

(New) Data Field

"positions" "data" "connections"

...
x, y
...

...
3.5
...

...

0 1
1 2
2 3

"colors"

...
0 0 1
...

data are dependent on (line) connections

In either case, the “connections” component of the map should be a
set of lines connecting the positions.

The Colormap Editor puts out a well-formed colormap. The
Construct module can also be used to create a color map. For
example, you have 10 data values to which you want to apply
particular colors. List those 10 data values as the first parameter to
Construct. Then list the 10 colors (RGB vectors) as the last
parameter to Construct. This will automatically create a
position-dependent color map of the appropriate structure to use
with the Color module. Alternatively, if you list only 9 colors (RGB
vectors) as the last parameter to Construct, a connection-dependent
color map will be created.

For surfaces, RGB colors in a color map should range between 0
and 1. Compute can be used to convert colors from the range of 0
to 255 to the range 0 to 1. To choose appropriate colors for
volumes see “Coloring Objects for Volume Rendering” on

78 IBM Visualization Data Explorer: User’s Reference

 Color

 Modules

page 113. Note that if you have an HSV (hue, saturation, and
value) color map, it can be converted to an RGB (red, blue, green)
color map using the Convert module.

opacity can be a scalar value or a field specifying an opacity map. This
map may be the output of the Colormap Editor (the second output)
or an imported opacity map. If it is an imported .cm file (see
“Import” on page 165), the opacity part of the color-opacity map will
be extracted and used (see below for a description of an opacity
map).

The input color or opacity can also be groups of color or of opacity
maps, as long as the hierarchy of the group matches that of input.

For surfaces, the default value of opacity is 1.0; the valid range is
0–1. For volumes, the default value is 0.5. If the object to be
colored is a volume with an aspect ratio much different from 1, it
may appear dark from certain viewing directions. In that case, use
the Compute module to multiply the contents of the data component
of the opacity and color maps by a scale factor greater than 1
before using them as an input to the Color module. (If you are
using delayed colors, modify the “color multiplier” and “opacity
multiplier” attributes. See the delayed parameter, described below.)

A well-formed opacity map should contain a 1-dimensional
“positions” component and a 1-dimensional “data” component
representing opacities. For surfaces, valid opacities range between
0 (transparent) and 1 (opaque). To choose appropriate opacities for
volumes see “Coloring Objects for Volume Rendering” on
page 113. Just as with a color map, the “data” component may be
either position-dependent or connection-dependent. An opacity map
can be created either with the Colormap Editor or using the
Construct module as described for color maps.

component specifies the component to which the module adds colors. The
default is the “colors” component, which applies to both the front
and the back of the object, but you can specify “front colors” or
“back colors” instead. Either one, if present, takes precedence over
the “colors” component. If you specify component as “colors,” the
module deletes any existing “front colors” or “back colors”
components. Which faces are “front” and which faces are “back”
depends on how “connections” component of the faces is defined
(see “Standard Components” on page 19 in IBM Visualization Data
Explorer User’s Guide).

delayed causes Color to create “delayed colors.” This option is valid only for
byte data. When delayed = 1:

� the “colors” component is a copy of the “data” component, and
a “color map” component is created (i.e., a color lookup table
with 256 entries representing the appropriate color for each of
the 256 possible data values).

� (if opacity has been specified) the “opacities” component is a
copy of the “data” component, and an opacity map with 256
entries is created.

� the module adds a “direct color map” attribute to the output
object (see “Using Direct Color Maps” on page 111).

 Chapter 2. Functional Modules 79

 Color

 Components
Adds a “colors” component. An “opacities” component is added if opacity is less
than 1 or the input data is a volume. If delayed = 1, the “colors” component is a
copy of the “data” component and a “color map” component is created. Likewise,
an “opacity map” component is created if opacity is less than one or the input is a
volume.

Example Visual Programs
Nearly every example visual program uses Color, including:

AlternateVisualizations.net

Sealevel.net

UsingColormaps.net

SIMPLE/Color

 See Also
 AutoColor, Caption, Convert, Map

80 IBM Visualization Data Explorer: User’s Reference

 ColorBar

 Modules

 ColorBar

 Category
Annotation

 Function
Creates a color bar.

 Syntax
colorbar = ColorBar(colormap, position, shape, horizontal, ticks,

min, max, colors, annotation, labelscale, font);

 Inputs
Name Type Default Description

colormap field none color map

position vector [0.95, 0.95] the position of the color bar (in
viewport-relative coordinates)

shape vector [300 25] length and width of the color bar
(in pixels)

horizontal flag 0 0: vertical orientation
1: horizontal orientation

ticks integer input
dependent

approximate number of tick
marks along the bar

min scalar or
object

map min minimum value on bar

max scalar or
object

map max maximum value on bar

label string no defaults label for color bar

colors vector list or
string list

appropriate colors for annotation

annotation string list "all" annotation objects to be colored

labelscale scalar 1.0 scale factor for labels

font string standard font for labels

ticklocations scalar list appropriate tick locations

ticklabels string list ticklocations tick labels

 Outputs
Name Type Description

colorbar color field the color bar

 Chapter 2. Functional Modules 81

 ColorBar

 Functional Details
The color bar generated by this module can be collected with the rest of the objects
in the scene (by using a Collect module) and incorporated into an image.

colormap must be a color map (e.g., the second output of AutoColor or the
first output of the Colormap Editor). The input can also be an
imported .cm file (see “Import” on page 165), in which case the
color-map part of the color-opacity map is extracted and used. (A
color map has a 1-dimensional “positions” component, representing
the data values, and a 3-dimensional “data” component,
representing the RGB color assigned to each data value.)

position is a 2-dimensional vector (or a 3-dimensional vector whose
z-component is ignored) indicating the position of the color bar in
the final image. In viewport-relative coordinates, [0 0] places the
bar at the lower left, and [1 1] at the upper right. These same
coordinates determine the reference point that is used to position
the bar relative to its placement in the image (e.g., for position =
[0 0], the lower left corner of the bar is placed in the lower left
corner of the image).

shape is a 2-vector that specifies the length and width of the color bar, in
pixels. For both horizontal and vertical orientations, the first
element of the vector is the length and the second is the width.

horizontal determines whether the orientation of the color bar is vertical (0) or
horizontal (1).

ticks specifies the number of tick marks to be placed on the color bar
(the actual number will at least approximate the specification). The
default varies the number in accord with the size of the bar.

min and max specify the limits of the color bar. The values can be scalar. If min
is an object (a data field), the minimum and maximum data values
of that field are used to set the corresponding limits of the bar. If
min is scalar and max is an object (a data field), the maximum is the
maximum data value of that field. When neither is specified, the
minimum and maximum used are those of colormap.

label specifies a user-supplied label for the color bar.

colors and annotation
set the colors of certain components of the color bar.

colors can be a single color (RGB vector or color-name string) or a
list. The color-name string must be one of the defined color names
(see “Color” on page 75).

annotation can be a single string or a list of strings, chosen from
the following: “all.,” “frame,” “labels,” and “ticks.”

If annotation is not specified or is “all”—and if colors is a single
string—then colors is used for all color-bar annotation. Otherwise
the number of colors must match the number of annotation strings
exactly. The default frame color is “clear.”

labelscale determines the size of the axes and tick-mark labels. For example,
labelscale = 2.0 will display the labels at double their default size.

82 IBM Visualization Data Explorer: User’s Reference

 ColorBar

 Modules

font specifies the font used for axes and tick-mark labels. You can
specify any of the defined fonts supplied with Data Explorer. These
include a variable-width font (“variable”, the default for axes labels)
and a fixed-width font (“fixed”, the default for tick-marks labels).

area gothicit_t pitman roman_ext

cyril_d greek_d roman_d script_d

fixed greek_s roman_dser script_s

gothiceng_t italic_d roman_s variable

gothicger_t italic_t roman_tser

For more information, see Appendix E, “Data Explorer Fonts” on
page 307 in IBM Visualization Data Explorer User’s Guide.

ticklocations specifies the explicit location for tick marks. If specified, overrides
the value as determined by ticks.

ticklabels specifies the list of labels to be associated with the tick locations
specified by ticklocations. If ticklabels is specified, and
ticklocations is not specified, then ticklocations defaults to the
integers 0 to n-1 where n is the number of items in ticklabels.

Notes:

1. min and max, if given, or the extent of the data if min and max are not given, set
the extent of the color bar.

2. If you are using Render or Display to render an object which contains a color
bar, when you change the resolution of the camera the size of the color bar in
pixels will not change. Thus if you want the color bar to take up the same
proportion of the image, use the ScaleScreen module to change the size of the
color bar.

Example Visual Programs
BandedColors.net

Sealevel.net

UsingColormaps.net

UsingIsosurface.net

VolumeRendering.net

SIMPLE/ColorBar.net

SIMPLE/ScaleScreen.net

 See Also
 AutoColor, AutoGrayScale, Color, Map, ScaleScreen, Legend

 Chapter 2. Functional Modules 83

 Colormap

 Colormap

 Category
Special

 Function
Produces a color map.

 Syntax
Available only through the user interface.

 Inputs
Name Type Default Description

data field none object used to derive min or max

min scalar min of data minimum of color-map range

max scalar max of data maximum of color-map range

nbins integer 20 number of bins in the histogram

colormap field or group none RGB color map to be used

opacity field none opacity map to be used

title string "Colormap
Editor"

title of editor

 Outputs
Name Type Description

rgb field RGB color field

opacity field opacity field

 Functional Details
This interactive module allows the user to create color maps that are applied to
data. Through inputs to the module (either the outputs of other tools or values set
in its configuration dialog box), the Colormap Editor can be “data driven.” If it is not
data driven, then the attributes (such as min and max) are taken from values set by
the user in the Colormap Editor.

Note: The Colormap Editor itself is invoked by double-clicking on the module’s
icon in the VPE window. The module’s configuration dialog box is accessed from
the Edit pull-down menu in the same window.

data input can be used to derive the minimum and maximum values in
the color and opacity maps. If this parameter is specified, a
histogram of the “data” component becomes available in the
Colormap Editor.

min sets the minimum value used in the color and opacity maps. If this
parameter is specified, it overrides the minimum value set by data.
If neither min nor data is specified, the value is set in the minimum
field of the Colormap Editor dialog box.

84 IBM Visualization Data Explorer: User’s Reference

 Colormap

 Modules

max sets the maximum value in the color and opacity maps. If this
parameter is specified, it overrides the maximum value set by data.
If neither max nor data is specified, the value is set in the maximum
field of the Colormap Editor dialog box.

nbins specifies the number of data bins in the histogram displayed by the
Colormap Editor. A value of 0 indicates that the histogram should
not be computed. The histogram is accessible through the Axis
Display in the Options pull-down menu in the Colormap Editor.

colormap specifies the color map used to initialize the color-map portion of
the Colormap Editor. For example, the map may be an imported
.cm file, which contains both a color and an opacity map. If this file
is passed to the colormap parameter, both maps will be used to
initialize the maps in the editor. Alternatively, a simple map field
can be passed to the appropriate parameter(s).

Note that only the color information of the map is used to initialize
the Colormap Editor; the “positions” component of the map
(representing the data range to which the colors apply) are ignored.
This is to allow a colormap to be used for any input data set which
may be passed to the data parameter; the range of the map will be
taken from data, rather than from the colormap. If you want to use
the actual “positions” of the colormap, then simply use Mark to mark
the “positions” component of the colormap, and pass the output of
Mark to the data parameter of Colormap.

opacity specifies the opacity map used to initialize the opacity-map portion
of the Colormap Editor.

title specifies the title of the Colormap Editor window.

Example Visual Programs
UsingColormaps.net

VolumeRendering.net

An example that uses a data-driven Colormap is:

DataDrivenInteractors.net

 See Also
 AutoColor, Color

 Chapter 2. Functional Modules 85

 Compute

 Compute

 Category
Transformation

 Function
Evaluates an expression on each data point in a specified field or value list.

 Syntax
output = Compute(expression, input, ...);

 Inputs
Name Type Default Description

expression string none expression to be computed

input field or value
list

no default input value

... more input values

 Outputs
Name Type Description

output field, value, or
value list

output values

 Functional Details
This module applies an expression to every data value in a field.

expression is the mathematical expression to be applied to input. Table 1 on
page 87 lists the operators.

input is the field or value list to which expression is to be applied. If
there are more than one, the input fields must be isomorphic (i.e.,
their hierarchies must match exactly).

A single Compute module can operate on a maximum of 21 input values. In the
user interface, the default number of enabled input tabs is two. The default number
of enabled input tabs is two. (Tabs can be added to the module icon and removed
with the appropriate ...Input Tab options in the Edit pull-down menu of the VPE.)

In the user interface, variables have names and expression does not require
quotation marks. If the vector variable is “sample,” the vector elements are
“sample.x,” “sample.y,” ... or “sample.0,” “sample.1,”

In the scripting language, the parameters of an expression are indicated by $n,
where n is the index of the parameter, and counting begins at 0. The first three
components of a vector can be expressed by “.x,” “.y,” and “.z,” or by “.0,” “.1,” and
“.2.” The syntax for creating a vector from multiple inputs is [$0, $1, $2, ...], where
the commas separators are required.

86 IBM Visualization Data Explorer: User’s Reference

 Compute

 Modules

Thus, in the user interface the expression used to add the value 3 to every data
value of the input field would be “a + 3.,” while in the scripting language it would be
“$0 + 3.”

Multiple expressions can be entered if they are separated by semicolons; the final
expression is used as the output. For example, “temp=a.x; sin(temp)” is equivalent
to “sin(a.x)”.

Compute uses C-language-style order of precedence for mathematical operations.

Operations applied to invalid elements of fields typically result in invalid elements.
(For more information, see “Invalid Positions and Invalid Connections Components”
on page 23 in the IBM Visualization Data Explorer User’s Guide.) For example, if
at a particular element field “a” and “c” are valid, but field “b” is not, “a+b” is invalid,
and “a? b: c” is valid only if “a” is 0; otherwise, it is invalid. An exception is the
“invalid” function, which returns the integer 1 if the entry is invalid and 0 otherwise.

Operations such as multiplying a vector by a scalar have the expected effect: each
element of the vector is multiplied by the scalar. Likewise, the addition of two
equal-length vectors or equal-size matrices results in an element-by-element sum.
The Compute module defines the multiplication (\) of two equal-length vectors as
an element-by-element multiplication (as opposed to the dot product). Other
operations, such as the sine of a vector, are defined similarly.

Constants may be specified as double precision by using scientific notation with “d”
indicating the exponent (e.g., 1dð is double-precision 1).

Note that you can convert a “ref” type invalid component (see “Invalid Positions and
Invalid Connections Components” on page 23 in IBM Visualization Data Explorer
User’s Guide) using the expression “byte (invalid (a))”. Then use Replace to
substitute this new array into the original field as the “invalid positions” or “invalid
connections” component.

Table 1 (Page 1 of 4). Operators for the Compute Module

Functions Types of Operands

Trigonometric Functions (argument in radians)
 sin(a), cos(a), tan(a), asin(a), acos(a), atan(a), atan2(a, b) float, double

Hyperbolic Functions
 sinh(a), cosh(a), tanh(a) float, double

Logarithmic Functions
 log(a), In(a) (natural logarithm), log10(a)
 (log base 10—see Note 1), exp(a) float, double

Unary Functions
 +a, −a (negation) any type

Binary Functions
 a+b, a−b, a*b, a/b, a%b (modulus—see Note 1),
 a^b or a**b (exponentiation—see Note 4) any type

Vector Functions (see Note 1)
 a dot b or dot(a, b) float vector
 a cross b or cross(a,b) float 3-vector
 mag(a) double, float vector
 norm(a) float vector

Miscellaneous Functions
 sqrt(a) float, double, complex
 pow(a, b) (see Note 4) float, double, complex

 Chapter 2. Functional Modules 87

 Compute

Table 1 (Page 2 of 4). Operators for the Compute Module

Functions Types of Operands

 abs(a) (see Note 2) double, float, integer,
complex

 arg(a) complex only
 sign(a) all real types
 min(a, b, ...), max(a, b, ...) scalar
 invalid(a) (see Note 5) any type
 random(a,seed) (see note 8) produces random

values in the range
0<=r<1 for each item in
a.

Type Manipulation Functions
 int(a), float(a), byte(a), char(a), double(a), short(a), float, integer, byte,
 sbyte, ubyte, ushort, uint (see Note 6) short, double
 trunc(a), floor(a), ceil(a), rint(a) float, double
 complex(a,b) or complex(a), float, integer, byte,

short,
 double

 real(a) complex only
 imag(a) complex only

Vector Construction
 [a, b, ...] any type

Vector Selection Functions
 a.x or a.0, a.y or a.1, and so on vector
 select(a,b) (selects bth element of a,
 where element is of rank r−1) a is a vector, b is an

integer

Conditional Functions
 a?b:c

if a != 0, then b, else c. (b and c must be of the same type.)
Expressions b and c are always evaluated, and the output value
depends on the value of a.

a is an integer

Logical Operations
 binary: <, >, <=, >= (true = 1; false = 0) any scalar type
 binary: ==, != any type
 Unary: ! (not), binary: && (and), · (or) integer

Bitwise Operations
 and(a,b), xor(a,b), or(a,b), not(a) (one’s complement) byte, int

String functions (see Note 7)
 strcmp(a,b)

compares strings a and b and returns 0 if a==b, a negative integer
if a<b, and a positive integer if a>b
stricmp is identical to strcmp except that it ignores case

strings

 strlen(a)
returns the length of string a

string

88 IBM Visualization Data Explorer: User’s Reference

 Compute

 Modules

To operate on a component other than “data,” use the Mark and Unmark modules
together with Compute.

A single Compute module can operate on a maximum of 21 ...Input values. The
default number of enabled input tabs is two. (Tabs can be added to the module
icon and removed with the appropriate ...Input Tab options in the Edit pull-down
menu of the VPE.)

Note: Other than a divide by zero, Compute operations are unchecked.

Table 1 (Page 3 of 4). Operators for the Compute Module

Functions Types of Operands

 strstr(a,b)
finds substring b in string a and returns 1-based offset of b in a.
Thus strstr('artist','art') = 1 strstr('artist','picasso') = 0
strstr('monet','one') = 2
stristr(a,b) is identical to strstr except that it ignores case

strings

Notes:

1. The vector functions, modulus function, and log10() function do not accept complex numbers as
arguments.

2. Given an integer or floating-point value, the abs() function yields the absolute value. Given a
complex number, the abs() function yields a real absolute value.

3. If a string is passed as a parameter to Compute, it is treated as an array of bytes, with its
values being the ASCII values of the string elements.

4. This function returns a floating-point value if inputs are floating point or integer. It returns a
complex if the first input is complex.

5. Returns integer 1 if entity is marked invalid, and 0 otherwise.

6. Byte and char are same as ubyte.

7. Strings can be passed into Compute as the data component or directly from String and
StringList interactors. Strings can also be specified in the Compute expression directly by
enclosing them in single quotes. A single quote character is represented by a pair of single
quotes. Thus if a is the string “can't”, then strcmp(a,'can''t') = 0.

8. The random number generator will be seeded by the integer seed. If a corresponds to a group
then each member of a will be seeded by seed+n, where n corresponds to the member's
enumerated location in a. This results in repeatable behavior even when a composite field is
being processed in parallel on an SMP machine. To generate different random results, use a
different seed.

 Components
Modifies the “data” and “invalid positions” or “invalid connections” components. All
other components are propagated to the output.

Script Language Examples
1. The Compute module converts all the temperature data to Fahrenheit.

tempf = Compute("$ð\(9.ð/5.ð) + 32", tempc);
...

2. The input field is a vector field of dimension 9. The output field is scalar,
consisting of the sixth component of the input field.

new_field = Compute("$ð.5",field);

3. The input field is a vector field, and the output field is also a vector field, with
the x component multiplied by 2.

new_field = Compute("[2\$ð.x, $ð.y, $ð.z]", field);

 Chapter 2. Functional Modules 89

 Compute

or

new_field = Compute("[2, 1, 1]\$ð", field);

4. Here field1 is a vector field and field2 and field3 are scalar. Therefore, the
output field will have a data component equal (on a point-by-point basis) to the
magnitude of field1 added to the quantity field2 divided by 4.5 times field3.

new_field = Compute("mag($ð) + $1/($2\4.5)", field1, field2, field3);

5. The Mark module to place the “positions” component of the 2-dimensional
object slice in the “data” component, allowing Compute to operate on the
positions. The formula string is assigned to function to simplify the call to
Compute and is equivalent to the following formula for converting slice
positions to 2-dimensional vectors:

x, y, z =

sin(2π ×
(x + 1)

3.9), y, − cos(2π ×
(x + 1)

3.9)
When the computation is done, the Unmark module replaces the original “data”
component for use in warped. The resulting positions are warped onto the
shape of a cylinder.
...

slice = Slice(electrondensity, "z", 5);

// Mark the positions so that they can be computed on

// The original x positions go from -1 to 2.9

// The original y positions go from -3 to 2.9

markedslice = Mark(slice,"positions");

// Warp the positions onto the shape of a cylinder

pi = 3.14159;

exp = "[sin(2\$1\($ð.x+1)/3.9), $ð.y, -cos(2\$1\($ð.x+1)/3.9)]";

warped = Compute(exp, markedslice, pi);

// Unmark the warped positions, returning them to the positions

 // component

warped = Unmark(warped, "positions");
...

6. This example differs from the previous one in that the exp) function warps the
positions onto a double cone shape, by implementing the following formula:

x, y, z =

y × sin(2π ×
(x + 1)

3.9), y, − y × cos(2π ×
(x + 1)

3.9)
...

// Now warp the positions onto the shape of a doubled cone

// by multiplying the x and z positions by the original

// y value, which goes from -3 to 2.9

exp = "[$ð.y\sin(2\$1\($ð.x+1)/3.9),$ð.y, -$ð.y\cos(2\$1\($ð.x+1)/3.9)]";

warped = Compute(exp, markedslice, pi);

// Unmark the warped positions, returning them to the positions

 // component

warped = Unmark(warped, "positions");
...

90 IBM Visualization Data Explorer: User’s Reference

 Compute

 Modules

Example Visual Programs
Many of the example visual programs use Compute, including:

ComputeOnData.net

DataDrivenInteractors.net

PlotTwoLines.net

WarpingPositions.net

 See Also
 Mark, Unmark

 Chapter 2. Functional Modules 91

 Compute2

 Compute2

 Category
Transformation

 Function
Evaluates an expression on each data point in a specified field or value list.

 Syntax
output = Compute2(expression, name, input, ...);

 Inputs
Name Type Default Description

expression string none expression(s) to be computed

name string no default name of input that follows
(defaults to “a”)

input field or value
list

no default input value

name1 string no default name of input that follows
(defaults to “b”)

input1 field or value
list

no default input value

...

 Outputs
Name Type Description

output field, value, or
value list

output values

 Functional Details
The primary advantage of this alternative form of Compute is that, in the user
interface, expression is an input that can be provided by another tool (e.g., a
selector interactor). All the functions of Compute (see “Compute” on page 86) are
also functions of Compute2.

expression is a mathematical expression to be evaluated for a set of input
values. Table 1 on page 87 lists the operators.

This parameter is followed by one or more name-input pairs.

name is name of the variable in the expression to be evaluated.

input is the input to which expression is applied. If there are more than
one, the input fields must be isomorphic (i.e., their hierarchies must
match exactly).

A single Compute2 module can operate on a maximum of 21 input values. The
default number of enabled input tabs is two. (Tabs can be added to the module

92 IBM Visualization Data Explorer: User’s Reference

 Compute2

 Modules

icon and removed with the appropriate Input/Output Tabs options in the Edit
pull-down menu of the VPE.)

Example Visual Programs
ComputeMultiLine.net

SIMPLE/Compute2.net

 See Also
 Compute

 Chapter 2. Functional Modules 93

 Connect

 Connect

 Category
Realization

 Function
Creates triangle connections for a field of scattered positions.

 Syntax
output = Connect(input, method, normal);

 Inputs
Name Type Default Description

input field or vector
list

none field with positions to be
connected

method string "triangulation" connection method to be used

normal vector [0 0 1] normal to the projection plane

 Outputs
Name Type Description

output field connected field

 Functional Details
The triangle connections created by this module form a surface.

input should be (1) a field with a 2- or 3-dimensional component or (2) a
list of 2- or 3-dimensional vectors. In the second case, the vectors
are interpreted as positions.

method specifies the method of connection. At present, Delaunay
“triangulation” (involving Voronoi tesselation of a plane) is the only
method supported.

normal specifies the plane to which 3-dimensional positions are projected
before triangulation is computed. Note that the output positions will
be the original 3-dimensional points.

Degenerate triangles (i.e., those with colinear vertices) are not included in the
output object.

 Components
Adds a “connections” component. All components that depend on the “positions”
component are unchanged in the output.

94 IBM Visualization Data Explorer: User’s Reference

 Connect

 Modules

Example Visual Program
ConnectingScatteredPoints.net

SIMPLE/Connect.net

 See Also
 Regrid, AutoGrid

 Chapter 2. Functional Modules 95

 Construct

 Construct

 Category
Realization

 Function
Constructs a field with regular connections.

 Syntax
output = Construct(origin, deltas, counts, data);

 Inputs
Name Type Default Description

origin vector list input
dependent

origin for positions or a list of
positions

deltas vector list input
dependent

deltas for positions

counts integer or
vector

input
dependent

number of positions in each
dimension

data value list or
string list

no default data, last index varies fastest

 Outputs
Name Type Description

output field the output field

 Functional Details
This module creates a field by defining its positions and connections.

origin specifies either the origin of a field with regular positions or a list of
positions for a field with irregular positions.

deltas should be used only for creating a field with regular connections. It
specifies one of the following:

� a vector of the same shape as origin, if origin is specified
� a list of vectors that match origin, the number of vectors being

equal to the number of dimensions in origin. (This
specification can be used to define a grid with non-orthogonal
axes.)

If origin is not specified, the dimensionality of the output positions
is derived from the dimensionality of deltas. The default value is a
unit vector.

counts specifies the number of positions in each dimensions for a field with
regular connections. The module interprets this parameter
according to the value specified by origin. If origin specifies:

96 IBM Visualization Data Explorer: User’s Reference

 Construct

 Modules

� a single vector: the field will have regular positions and regular
connections. (If counts has been specified as a single number,
the module creates that number of positions in each dimension.)

� a vector list: the field will have irregular positions and regular
connections. The product of the counts must match the number
of positions given by origin.

To create a field consisting of just the items specified by origin as
the “positions” component, do not specify counts. If the list of
vectors contains more than one item, the output has, in addition to
the “positions” component containing the points in origin, a
“connections” component of element type “lines”.

data specifies one or more data values associated with the positions or
connections of the field.

If specified, this parameter must be either a single value or a list of
values. If it is a single value or a list with a length that matches the
number of positions [e.g., n0×n1..., where n0, n1, ..., are the counts],
then the output data component is dependent on the “positions”
component. If the list has a length that matches the number of
connection elements (e.g., (n0-1) × (n1-1) ...), then the output data is
dependent on the “connections” component. Any other number of
items in data is an error.

The type of the “data” component is the type of the input data. If
data is a string list, the “data” component will be TYPE_STRING.

Note: If none of the first three parameters is specified (origin, deltas, or counts),
Construct creates an empty field.

 Components
Creates “positions” and “connections” components. A “data” component is created
if data is not null.

Example Visual Programs
AnnotationGlyphs.net

ConnectingScatteredPoints.net

ProbeText.net

Sealevel.net

UsingColormaps.net

UsingStreakline.net

SIMPLE/Construct.net

 Chapter 2. Functional Modules 97

 Convert

 Convert

 Category
Transformation

 Function
Converts between RGB and HSV color spaces.

 Syntax
Output = Convert(data, incolorspace, outcolorspace, addpoints);

 Inputs
Name Type Default Description

data vector list or
field

none input colors or color map

incolorspace string "hsv" color space of input

outcolorspace string "rgb" color space of output

addpoints integer input
dependent

add positions to ensure valid
color transformations

 Outputs
Name Type Description

output vector list or field output colors or color map

 Functional Details
data specifies the value(s) to be converted. If the parameter value is a

vector or list of vectors, the output is a vector or list of vectors.
These must be of 3-vectors, representing hue, saturation, and value
(HSV) or red, green, and blue (RGB).

If the parameter value is a field, the module converts the “data”
component of that field (which must consist of 3-vectors) from one
color space to the other.

The range of hues is 0 (red) to 1 (red); 0.3333 = green and 0.6666
= blue. Values outside this range simply “wrap.” That is, a hue of 0
= a hue of 1 = a hue of 2, and so on.

The range of saturation is 0 (white) to 1 (pure color).

The range of value is 0 (black) to 1 (full intensity).

incolorspace is the color space of the input (data) and must be “rgb” or “hsv.”

outcolorspace is the color space of the output and must be “rgb” or “hsv.”

addpoints specifies whether points are to be added to the resulting output:

If data is a color map (i.e., if it has 1-D positions and 3-D data), the
default value (1) specifies that points will be added to the “positions”
component of the map so that the conversion between color spaces

98 IBM Visualization Data Explorer: User’s Reference

 Convert

 Modules

(which is nonlinear) remains valid. A parameter value of 0 (zero)
specifies that no points are to be added.

A parameter value of 1 (one) is valid only if the input is a color map.
If the input object is not a color map (i.e., if it has positions of
dimensionality greater than 1), the default value is 0 (zero) and the
“data” component is converted as specified by incolorspace and
outcolorspace in one-to-one fashion.

 Components
Modifies the “data” component and may modify the “positions” component. All
other input components are propagated to the output.

Example Visual Programs
AlternateVisualizations.net

UsingCompute.net

 See Also
 Color

 Chapter 2. Functional Modules 99

 CopyContainer

 CopyContainer

 Category
Structuring

 Function
Copies the top container object

 Syntax
copy = Copy(input);

 Inputs
Name Type Default Description

input object none object to copy

 Outputs
Name Type Description

copy object copy of input

 Functional Details
This module copies an object.

input is the object to copy. Only the “container” object (the field or group)
and any attributes attached to the container object are copied;
members or components of the container object are not copied.

 Components
This module copies the specified information from the input to the output.

100 IBM Visualization Data Explorer: User’s Reference

 DFT

 Modules

 DFT

 Category
Transformation

 Function
Computes a discrete Fourier transform.

 Syntax
output = DFT(input, direction, center);

 Inputs
Name Type Default Description

input field none field to be transformed

direction string "forward" direction of the transform

center flag 0 center the result of the transform

 Outputs
Name Type Description

output field transformed data

 Functional Details
This module computes the discrete Fourier transform of a 2- or 3-dimensional
regular data set.

input specifies the field to be transformed.

direction is one of the following: “forward,” “inverse,” or “backward” (the last
two are interchangeable).

center specifies whether zero frequency should be placed at the center of
the transformed field or at the origin of the positions array.

 Components
All scalar components of input are individually Fourier-transformed and output as
complex float. All other input components are propagated to the output. Thus a
float 2-vector input produces a complex 2-vector output.

Example Visual Programs
FFT.net

 See Also
 FFT, Filter, Morph

 Chapter 2. Functional Modules 101

 DXLInput

 DXLInput

 Category
DXLink

 Function
Enables a remote DXLink application to set a parameter value in a visual program.

 Syntax
Available only through the user interface.

 Inputs
Name Type Default Description

default value, string,
object

no default default value (overridden by the
remote application)

 Outputs
Name Type Description

output object the default value or the value sent from a
remote application.

 Functional Details
This tool receives variable values from a remote application that uses the DXLink
library of function calls (see Chapter 16, “DXLink Developer's Toolkit” on page 157
in IBM Visualization Data Explorer Programmer’s Reference). The value received
from the application is passed as output from the DXLInput tool.

The module’s label (set in the Notation field of the Configuration dialog box) is
used to establish a global variable, which is then set by the DXLSet... functions of
the DXLink development library. One of the parameters of these functions is the
global variable name, which must be the same as the label of the DXLInput tool
that is intended to receive the value given in the function call. Changing the text of
the Notation field in DXLInput’s configuration dialog box changes the label
displayed on the tool’s VPE stand-in, just as it does for Receivers and Transmitters.

If there is no remote application setting the default values, DXLInput will output the
value specified by default. If a remote application sets the value, that value
overrides default. This parameter provides a mechanism that makes it easier to
debug visual programs that are intended to be used and controlled by remote
DXLink applications.

Note: The default value must be set in the module’s configuration dialog box.
Any value set by a connection to the output of another tool will not be overridden
by a value set by a remote application.

102 IBM Visualization Data Explorer: User’s Reference

 DXLInput

 Modules

 See Also
 DXLOutput, DXLInputNamed, Input, Output

 Chapter 16, “DXLink Developer's Toolkit” on page 157 in IBM Visualization Data
Explorer Programmer’s Reference.

 Chapter 2. Functional Modules 103

 DXLInputNamed

 DXLInputNamed

 Category
DXLink

 Function
Enables a remote DXLink application to set a parameter value in a visual program,
while also setting the name of the variable.

 Syntax
output = DXLInputNamed(name, default);

 Inputs
Name Type Default Description

name string none name of variable

default value, string,
object

no default default value (overridden by the
remote application)

 Outputs
Name Type Description

output object the default value or the value sent from a
remote application

 Functional Details
This tool receives variable values from a remote application that uses the DXLink
library of function calls (see Chapter 16, “DXLink Developer's Toolkit” on page 157
in IBM Visualization Data Explorer Programmer’s Reference). The value received
from the application is passed as output from the DXLInputNamed tool.

This module differs from DXLInput in that the name of the variable is set using the
name parameter, rather than using the Notation field of the Configuration Dialog box.
This enables the variable name to be passed in via a wire, rather than preset for
the module. This allows you to place DXLInputNamed in a macro and have
different instances of the macro use different variable names.

name is the variable name. This variable is then set by DXLSet...
functions of the DXLink development library.

default is the default value for the output of DXLInputNamed.

If there is no remote application setting the default values, DXLInputNamed will
output the value specified by default. If a remote application sets the value, that
value overrides default. This parameter provides a mechanism that makes it
easier to debug visual programs that are intended to be used and controlled by
remote DXLink applications.

Note: The default value must be set in the module’s configuration dialog box.
Any value set by a connection to the output of another tool will not be overridden
by a value set by a remote application.

104 IBM Visualization Data Explorer: User’s Reference

 DXLInputNamed

 Modules

 See Also
DXLInputDXLOutput , Input, Output

Chapter 16, “DXLink Developer's Toolkit” on page 157 in IBM Visualization Data
Explorer Programmer’s Reference.

 Chapter 2. Functional Modules 105

 DXLOutput

 DXLOutput

 Category
DXLink

 Function
Sends a value to a remote application.

 Syntax
DXLOutput(label, value);

 Inputs
Name Type Default Description

label string none name associated with value

value value list or
string list

none value sent to a DXLink
application

 Functional Details
This module sends variable values from a visual program to a remote application
that uses the DXLink library of function calls (see Chapter 16, “DXLink Developer's
Toolkit” on page 157 in IBM Visualization Data Explorer Programmer’s Reference).
Values are sent as strings and in the same format as that used by the Echo tool.

label is similar in function to the label set in the DXLInput configuration
dialog box in that it associates a name (i.e., a global variable name)
with a value. This global variable name is used in the
DXLSetValueHandler() routine of the DXLink library (see “Receiving
Messages from the Server” on page 171 in IBM Visualization Data
Explorer Programmer’s Reference).

The remote application should install a handler for the various
labeled global variable names in a program (see
DXLSetValueHandler in “Receiving Messages from the Server” on
page 171 in IBM Visualization Data Explorer Programmer’s
Reference). In general, label values should be unique within a
program.

Note: If you are using the Data Explorer user interface, label
does not appear as an input parameter but is set in the notation
field of the DXLOutput configuration dialog box.

value is the value that is to be converted to a string and sent to a remote
application. This value must be a Data Explorer value list or string
(e.g., a scalar, integer list, matrix, etc.). It cannot be a Field or
Group object.

 See Also
DXLInput,Input , Output, DXLInputNamed

106 IBM Visualization Data Explorer: User’s Reference

 Describe

 Modules

 Describe

 Category
Debugging

 Function
Describes a Data Explorer object

 Syntax
Describe(object, options);

 Inputs
Name Type Default Description

object object none Object to be described

options string “all” how much information to provide

 Functional Details
object Specifies any Data Explorer object, for example, a group, field, or

scalar value. This module will query the object and present
information about it in the Message Window (use Open Message
Window in the Windows menu).

options specifies how much information to provide. options must be one
of “all”, “structure”, “details”, or “render”:

“all” (the default) prints out all three types of the
following information. Specifying any one of the
following keywords restricts the output to that
subset of the information

“structure” describes the top level object

“details” describes in more detail any data in the object

“render” describes whether the object is renderable (i.e.
ready for input to the Image or Display tools), and
if not suggests what needs to be added or changed
to make it so.

 Components
Does not modify the input object.

Example Visual Programs
SIMPLE/Describe.net

 See Also
Print, Echo, VisualObject

 Chapter 2. Functional Modules 107

 Direction

 Direction

 Category
Transformation

 Function
Converts azimuth, elevation, and distance to an [x, y, z] position.

 Syntax
point = Direction(azimuth, elevation, distance);

 Inputs
Name Type Default Description

azimuth scalar 0 azimuth in degrees

elevation scalar 0 elevation in degrees

distance scalar 1 distance

 Outputs
Name Type Description

point vector x, y, z position

 Functional Details
The output of Direction can be used, for example, as input to the Camera or
AutoCamera module to set the look-from direction.

azimuth the angular distance (in degrees) from the positive z-axis to the
positive x-axis.

elevation the angular distance (in degrees) from the positive xz plane toward
the positive y-axis.

distance is measured in user units.

Example Visual Program
MovingCamera.net

 See Also
 AutoCamera, Camera, ClipPlane

108 IBM Visualization Data Explorer: User’s Reference

 Display

 Modules

 Display

 Category
Rendering

 Function
Displays an image or renders a scene and displays an image.

 Syntax
where = Display(object, camera, where, throttle);

 Inputs
Name Type Default Description

object object none object to render or image to
display

camera camera no default camera if rendering is required

where window or
string

the user’s
terminal

host and window for display

throttle scalar 0 minimum time between image
frames (in seconds)

 Outputs
Name Type Description

where window window identifier for Display window

 Functional Details
object is the object to be displayed or to be rendered and displayed.

camera is the camera to be used to render object. If camera is not
specified, the system assumes that object is an image to be
displayed (e.g., the output of the Render module).

Note: A transformed camera cannot be used for this parameter.

where specifies the host and window for displaying the image. On a
workstation, the format of the parameter string is:

X, display, window

where X refers to the X Window System; display is an X server
name (e.g., host:0); and window is a window name (and must not
begin with two #-characters). As a rule, it is not necessary to set
this parameter. But when it is set, the resulting Image window is
not controlled by the user interface (e.g., it has no menu options).
The function of this parameter is to specify another workstation on
which to display an image (e.g., by setting it to
“X,workstationname:0, message”). Using the Image tool, you can
display the same image to another workstation simply by connecting
the module’s two outputs to the two inputs of Display and setting
where.

 Chapter 2. Functional Modules 109

 Display

If you are using SuperviseState or SuperviseWindow to control user
interactions in the Display window, then where should be set with
the where output of SuperviseWindow.

Note: If you are using the where parameter, it is important to set
its value before the first execution of Display.

throttle specifies a minimum interval between successive image displays.
The default is 0 (no delay).

where The output can be used, for example, by ReadImageWindow to
retrieve the pixels of an image after Display has run.

Notes:

1. In the user interface, you must use the Image tool rather than Display if you
want to use many of the interactive image-manipulation functions provided by
Data Explorer. For more information, see “Controlling the Image: View
Control...” on page 74 in IBM Visualization Data Explorer User’s Guide.
However, see “SuperviseWindow” on page 336 and “SuperviseState” on
page 332 for a discussion of how to create your own interaction modes when
using the Display window.

2. The Display module can render surfaces, volumes, and arbitrary combinations
of surfaces and volumes. (However, the current volume-rendering algorithm
does not support coincident or perspective volumes.) To render an object, that
object must contain a “colors” component. Many modules add a default color.
In addition, volume rendering (e.g., of cubes, as opposed to lines) requires an
“opacities” component. all surfaces, the lack of an “opacities” component
implies an opaque surface.

3. Choosing appropriate color and opacity maps for volume rendering can be
difficult. The AutoColor, AutoGrayScale, and Color modules use heuristics to
generate good values; as a rule of thumb, the opacity should be 0.7/T, and the
color value 1.4/T (where T is the thickness of the object in user units). See
also “Coloring Objects for Volume Rendering” on page 113.

Changing the Resolution of an Image: If you are using Display without a
camera to simply display an image, you can increase or decrease the resolution of
the image by using Refine or Reduce, respectively, on the image before passing it
to Display (see Refine and Reduce).

Pasting Images Together: The Arrange module can be used before Display to
lay out images side by side, or one above the other (see Arrange).

Delayed Colors and Opacities (Color and Opacity Lookup Tables) Delayed
colors are a way of compactly storing color and opacity information. By default,
whenever you use one of the coloring modules (AutoColor, AutoGrayScale, Color),
the colors and opacities are stored one-per-data value as a floating point RGB
3-vector or floating point value, respectively, ranging from 0 to 1. However, if you
have unsigned byte data, then it is much more efficient to use “delayed colors” and
“delayed opacities”. When you use delayed colors or opacities, the “colors” or
“opacities” component is simply a copy of (actually a reference to) the “data”
component. When rendering occurs, these components are interpreted as indices
with which to look up a color or opacity value in a table.

110 IBM Visualization Data Explorer: User’s Reference

 Display

 Modules

If you specify the delayed parameter as 1 to any of the coloring modules, they will
automatically perform this “copy” of the “data” component, and will attach a “color
map” or “opacity map” component which contains 256 RGB colors, or 256
opacities. If you already have a color or opacity map, either imported or created
using the Colormap Editor, and wish to use delayed colors or delayed opacities,
you can pass your color map or opacity map to the Color module as the color or
opacity parameter, and set the delayed parameter to Color as 1.

The structure of a color map or opacity map is described in “Color” on page 75.
The Colormap Editor produces as its two outputs well-formed color maps and
opacity maps. Alternatively, if you already have a simple list of 3-vectors or list of
scalar values, and want to create a color map or opacity map, you can do this
using Construct. The first parameter to Construct should be [0], the second should
be [1], and the third should be 256. This will create a “positions” component with
positions from 0 to 255. The last parameter to Construct should be your list of 256
colors or opacities.

If you are reading a stored image using ReadImage, and the image is stored with a
colormap, you can specify that the image should be stored internally in Data
Explorer with delayed colors by using the delayed parameter to ReadImage.

You can also convert an image (or object) to a delayed colors version by using
QuantizeImage.

Using Direct Color Maps: If you are using delayed colors (see “Delayed Colors
and Opacities (Color and Opacity Lookup Tables)” on page 110 and “ReadImage”
on page 250) and displaying images directly (i.e. you are not providing a camera),
Display will use the provided color map directly instead of dithering the image.
(Depending on your X server, you may need to use the mouse to select the Image
or Display window in order for the correct color to appear.) If you do not want
Display to use the color map directly, use the Options module to set a “direct color
map” attribute with a value of 0 (zero).

Using Default Color Maps: When displaying non-delayed color images in 8-bit
windows, Display assumes that it can specify 225 individual colors. If this number
is not currently available in the shared color map, Display will find the best
approximations available. However, this may lead to a visible degradation of image
quality. Display may instead use a private color map. This decision is based on
the worst-case approximation that it must use with the default color map. If this
approximation exceeds a threshold, a private color map will be used. The
approximation quality is measured as Euclidean distance between the desired color
and the best approximation for that color, in an RGB unit cube.

An environment variable, DX8BITCMAP, sets the level at which the change to
using a private color map is made. The value of DX8BITCMAP should be a
number between 0 (zero) and 1 (one), and it represents the Euclidean distance in
RGB color space, normalized to 1, for the maximum allowed discrepancy. If you
set DX8BITCMAP to 1, then a private color map will never be used. On the other
hand, if you set DX8BITCMAP to −1, then a private color map will always be used.

Attribute Name Value Description

direct color map 0 or 1 whether or not to use a direct color
map

 Chapter 2. Functional Modules 111

 Display

The default is 0.1. See also the -8bitcmap command line option for Data Explorer
in Table 5 on page 295 in IBM Visualization Data Explorer User’s Guide.

Gamma Correction: Displayed images generated by Display or Image are
gamma corrected. Gamma correction adjusts for the fact that for many display
devices a doubling of the digital value of an image’s brightness does not
necessarily produce a doubling of the actual screen brightness. Thus, before
displaying to the screen, the pixel values are adjusted non-linearly to produce a
more accurate appearance.

The environment variables DXGAMMA_8BIT, DXGAMMA_12BIT, and
DXGAMMA_24BIT are used to specify values for gamma of 8-, 12-, and 24-bit
windows, respectively. If the appropriate DXGAMMA_nBIT environment variable is
not set, the value of the environment variable DXGAMMA will be used if one is
defined. Otherwise, the module uses the system default, which depends on the
machine architecture and window depth. This default is always 2 (two) except for
8-bit sgi windows, for which it is 1 (one). Note that the default depends on the
machine on which the software renderer is running, not on the machine that
displays the image.

Obtaining a WYSIWYG image of a higher resolution: If you wish to render a
displayed image at a higher resolution (for example to write to an output file), you
can usually simply use Render on the same object as object, with a new camera
(see “AutoCamera” on page 31 or “Camera” on page 49). However, if object
contains screen objects (captions and color bars), the new image will not be
WYSIWYG (What You See Is What You Get), with respect to the displayed image,
because the sizes of captions and color bars are specified in pixels rather than in
screen-relative units. The ScaleScreen module (see “ScaleScreen” on page 289)
allows you to modify the size of screen objects before rendering.

Image Caching: When given a camera input, the Display module (or Image tool)
caches rendered images by default. The result is faster redisplay if the same
object and camera are later passed to the module.

To turn off this automatic caching, use the Options module to attach a “cache”
attribute (set to 0) to object.

It is important to remember that this caching is separate from the caching of
module outputs, which is controlled by the -cache command-line option to dx.

Changing Rendering Properties: You can change the rendering properties of an
object by using the Options module. The following table lists the shading attributes
that can be set by the Options module for interpretation by the Display tool. (See
the section on surface shading in IBM Visualization Data Explorer Programmer’s
Reference for more information.)

Attribute Type Default Description

"ambient" scalar 1 coefficient of ambient light ka

"diffuse" scalar .7 coefficient of diffuse reflection kd

"specular" scalar .5 coefficient of specular reflection ks

"shininess" integer 10 exponent of specular reflection sp

112 IBM Visualization Data Explorer: User’s Reference

 Display

 Modules

As a rule of thumb, except for purposes of special effects, ka should be 1 and kd +
ks should be about 1. The larger ks, the brighter the highlight, and the larger e, the
sharper the highlight. The Shade module provides a shortcut for setting rendering
properties.

The attributes listed above apply to both the front and back of an object. In
addition, for each attribute “x” there is also a “front x” and a “back x” attribute that
applies only to the front and back of the surface, respectively. So, for example, to
disable specular reflections from the back surfaces of an object, use the Options
module to set the “back specular” attribute of the object to 0.

The determination of which faces are “front” and which are “back” depends on the
way in which the “connections” component of the faces is defined. “Front colors”
applies to clockwise faces, and “back colors” applies to counterclockwise faces.

Coloring Objects for Volume Rendering: The volume renderer interprets colors
and opacities as values per unit distance. Thus the amount of color and degree of
attenuation seen in an image object is determined in part by the extent of the
object’s volume. The Color, AutoColor, and AutoGrayScale modules attach “color
multiplier” and “opacity multiplier” attributes to the object so that colors and
opacities will be appropriate to the volume, while maintaining “color” and “opacity”
components that range from 0 to 1 (so that objects derived from the colored
volume, such as glyphs and boundaries, are colored correctly). See “Rendering
Model” on page 153 in IBM Visualization Data Explorer Programmer’s Reference.

These attributes adjust the colors and opacities to values that should be
“appropriate” for the object being colored. However, if the simple heuristics used
by these modules to compute the attribute values are not producing the desired
colors and opacities, you have two alternatives.

� One is to modify the result by changing the multiplier values of the color and
opacity attributes:

1. extract the “color multiplier” and “opacity multiplier” with the Attribute
module;

2. modify them with the Compute module; and
3. replace them in the object with the Options module.

� A second is to multiply the values in the “color” or “opacities” component:
1. mark the component (“colors” or “opacities”) with the Mark module;
2. modify the values with the Compute module; and
3. “unmark” them with the Unmark module to return them to the appropriate

component.

Only the first of these methods should be used for “delayed” colors.

Finally, if you color a group of volumes and the resulting image is black, the reason
is that the current renderer does not support coincident volumes.

Attribute Type Description

color multiplier scalar Multiplies values in the “color” component

opacity multiplier scalar Multiplies values in the “opacity”
component

 Chapter 2. Functional Modules 113

 Display

Shading: Objects are shaded when rendered only if a “normals” component is
present. Many modules (e.g. Isosurface) automatically add “normals”, but the
FaceNormals, Normals, and Shade modules can also be used to add normals.
Even if an object has “normals”, shading can be disabled by adding a shade with a
value of 0 (the Shade module can do this).

Object fuzz: Object fuzz is a method of resolving conflicts between objects at the
same distance from the camera. For example, it may be desirable to define a set
of lines coincident with a plane. Normally it will be unclear which object is to be
displayed in front. In addition, single-pixel lines are inherently inaccurate (i.e. they
deviate from the actual geometric line) by as much as one-half pixel; when
displayed against a sloping surface, this x or y inaccuracy is equivalent to a z
inaccuracy related to the slope of the surface. The “fuzz” attribute specifies a z
value that will be added to the object before it is compared with other objects in the
scene, thus resolving this problem. The fuzz value is specified in pixels. For
example, a fuzz value of one pixel can compensate for the described half-pixel
inaccuracy when the line is displayed against a surface with a slope of two.

To add fuzz to an object, pass the object through the Options module, specifying
the attribute as fuzz and the value of the attribute as the number of pixels (typically
a small integer).

Anti-aliasing and Multiple Pixel Width Lines: Hardware rendered images can
be made to anti-alias lines, or draw lines as multiple pixels wide. Note that these
options are not available in software rendering. To specify anti-aliasing of lines, use
the Options module to set an attribute on the object passed to Display of antialias
with the value of “lines”. To specify multiple pixel width lines, use the Options
module to set an attribute of line width with a value of the number of pixels wide
you want the line to be.

Rendering Approximations: Data Explorer provides access to the hardware
accelerators on the workstation, in addition to the default software rendering
techniques. The hardware enhancements are available only on workstations that
are equipped with 3-D graphic adapters. On systems without such adapters, only
the software rendering options are available. This enhancement is intended to
provide increased interactivity, especially in operations that involve only the
rendering process.

Attribute Name Values Description

shade 0 or 1 used to specify whether or not to
shade when normals are present

Attribute Type Description

fuzz scalar object fuzz

Attribute Values Description

antialias “lines” causes lines to be anti-aliased

line width n causes lines to be drawn with a width of n
pixels

114 IBM Visualization Data Explorer: User’s Reference

 Display

 Modules

Data Explorer can also provide accelerated rendering by approximating the
rendering using points, lines, and opaque surfaces. Such geometric elements are
often sufficient to approximate the appearance of the desired image, and thus are
useful for preliminary visualizations of the data.

The approximations fall into three main categories: bounding box, dots, and
wireframe. Wireframe is available only as a hardware rendering technique.

If you are using the graphical user interface and the Image tool, you can access the
rendering options by using the Rendering Options option on the Options pull-down
menu in the Image window. This option invokes a dialog box that allows you to set
the rendering approximations for continuous and one-time execution. (For more
information, see “Rendering Options...” on page 91 in IBM Visualization Data
Explorer User’s Guide.)

If you are not using the Image tool, then you must use the Options module to set
various attributes that control the rendering approximations. The following table
lists the attributes that control rendering approximations, together with the
permissible values for each attribute.

Note: If you do not pass a camera to Display (i.e., if object is already an image),
Display will always use software to display the image, regardless of the setting of
any rendering options using the Options tool.

Differences between Hardware and Software Rendering

1. For hardware rendering, when specifying “dots” for “rendering approximation,”
lines are drawn in their entirety, whereas for software rendering only the line
end points are drawn. The “render every” and “wire” approximations are
available only with hardware rendering. When the “box” approximation is
specified, hardware rendering will show the bounding box of each field in the
rendered object, while software rendering will show only the bounding box of
the entire object.

2. Some graphics adapters do not support clipping. On such adapters, “ClipBox”
and “ClipPlane” have no effect.

3. For some hardware platforms, surfaces specified with opacities are rendered by
the hardware as screen-door surfaces (i.e., every other pixel is drawn, letting
the background show through). This allows only one level of opacity and
completely obscures a semi-opaque surface that is behind another
semi-opaque surface. The transparency effect is hardware dependent, and can
produce a completely opaque or completely transparent appearance. True
transparency is supported for OpenGL platforms.

Attribute Name Values Description

"rendering mode" "software"
“hardware”

use software rendering
use hardware rendering

"rendering approximation" "none" “box”
“dots”
“wireframe”

complete rendering object
bounding box only
dot approximation to object
wireframe approximation to object

"render every" n render every nth primitive
render everything (default)

 Chapter 2. Functional Modules 115

 Display

4. The image displayed by the hardware rendering can be different from the
image produced by the software rendering. This is a result of several
differences in rendering techniques. The hardware rendering does not provide
gamma correction, causing images to be slightly darker. Normals are not
reversed when viewing the “inside” of a surface, with the result that lighting
effects are much dimmer on the “inside” of a surface. Attributes applied to the
“inside” of a surface (e.g., “back colors”) are ignored.

5. When using hardware rendering, the where parameter to Display cannot specify
a host other than the one on which the Display module is running. However, it
can specify a different display attached to the same host.

6. The hardware renderer does not duplicate the “dense emitter” model used by
the software renderer for rendering volumes. Only the data values at the
boundary of the volume are rendered, producing the appearance of a
transparent boundary of the volume.

7. For hardware rendering, a wireframe rendering approximation is not intended to
produce the same visual results as ShowConnections.

8. Hardware rendering handles colors between 0.0 and 1.0. If colors are outside
this range, each color channel is independently clamped, before lighting is
applied. In software rendering, clamping is done after lighting is applied.

9. Hardware rendering does not support view angles of less than 0.001 degree.

10. Anti-aliasing and multiple pixels width lines is only available in hardware
rendering.

Texture Mapping: If the machine on which Data Explorer is running supports
OpenGL or GL, then texture mapping is available using hardware rendering.
Texture mapping is the process of mapping an image (a field with 2-dimensional
positions, quad connections, and colors) onto a geometry field with 2-dimensional
connections and, typically, 3-dimensional positions (e.g., a color image mapped
onto a rubbersheeted height field). The advantage of texture mapping over the use
of Map, for example, is that the resulting image may have much greater resolution
than the height map.

The geometry field must have 2-D connections (triangles or quads) and must also
have a component, with the name “uv,” that is dependent on positions and provides
the mapping between the image and the positions of the geometry field. This
component consists of 2-vectors. The origin of the image will be mapped to the uv
value [0 0], and the opposite corner to the uv value [1 1].

The texture map is the image to be mapped onto the geometry field. One
requirement of the image (imposed by the hardware) is that the number of pixels in
each dimension must be a power of 2 greater than or equal to 32. The two
dimensions do not have to be the same size. The texture map should be attached
to the geometry field as an attribute, with the attribute name “texture,” which can be
done with the Options module. A texture-mapped image can be retrieved from the
Display window using ReadImageWindow and then written to a file using
WriteImage.

Attribute Name Value Description

texture a texture map specifies a texture map

116 IBM Visualization Data Explorer: User’s Reference

 Display

 Modules

 Components
The object input must have a “colors,” “front colors,” or “back colors” component.

Script Language Examples
1. This example renders two views of the object and displays them in two

separate windows, as specified by the where parameter.

electrondensity = Import("/usr/lpp/dx/samples/data/watermolecule");

isosurface = Isosurface(electrondensity, ð.3);

camera1 = AutoCamera(isosurface, "front", resolution=3ðð);

camera2 = AutoCamera(isosurface, "top", resolution=3ðð);

image1 = Render(isosurface, camera1);

image2 = Render(isosurface, camera2);

Display(image1,where="X, localhost:ð, view from front");

Display(image2,where="X, localhost:ð, view from top");

2. This example sets the rendering mode to “hardware” with the approximation
method of “dots.”

electrondensity = Import("/usr/lpp/dx/samples/data/watermolecule");

isosurface = Isosurface(electrondensity, ð.3);

from = Direction(65, 5, 1ð);

camera = AutoCamera(isosurface, from);

isosurface=Options(isosurface, "rendering mode", "hardware",

"rendering approximation", "dots");

Display(isosurface,camera);

Example Visual Programs
MovingCamera.net

PlotLine.net

PlotTwoLines.net

ReadImage.net

ScaleScreen.net

TextureMapOpenGL.net

UsingCompute.net

UsingMorph.net

 See Also
 Arrange, Collect, Filter, Image, Render, Reduce, Refine, ScaleScreen,
 Normals, FaceNormals, SuperviseWindow, SuperviseState,
 ReadImageWindow, Options

 Chapter 2. Functional Modules 117

 DivCurl

 DivCurl

 Category
Transformation

 Function
Computes the divergence and curl of a vector field.

 Syntax
div, curl = DivCurl(data, method);

 Inputs
Name Type Default Description

data vector field none field whose divergence and curl
are to be computed.

method string "manhattan" method to use

 Outputs
Name Type Description

div scalar field divergence field

curl vector field curl field

 Functional Details
data is the vector field to be operated on. The “data” component of the

output fields (div and curl) contains the divergence and curl
respectively. The other components of the original field remain
unchanged in the output fields.

method specifies the algorithm used to make the computation. Currently,
the only method supported is “manhattan.”

 Components
Modifies the “data” component for the outputs. All other input components are
propagated to the outputs.

Example Visual Program
WindVorticity.net

 See Also
 Gradient, Streakline, Streamline

118 IBM Visualization Data Explorer: User’s Reference

 Done

 Modules

 Done

 Category
Flow Control

 Function
Specifies whether a loop is to be terminated.

 Syntax
Done(done);

 Inputs
Name Type Default Description

done flag none 0: no termination
1: terminate the loop

 Functional Details
This module terminates a loop. If done is set to:

0 The macro containing the Done module will continue to execute until
done = 1 or until one of the other looping tools (ForEachN or ForEachMember)
terminates the loop.

1 The loop is terminated upon completion of the current loop iteration, regardless
of how many iterations have been, or remain to be, executed.

Typically, loops are initiated with ForEachMember or ForEachN, although they can
also be implemented with a Get/Set pair and Done.

Notes:

1. If this module is used in the scripting language, the results are defined only if it
is used inside a macro.

2. If done is set to 1 by an interactor during the execution of a loop, the new
setting will not take effect until the loop is completed: new interactor values are
considered at the end of an execution, and a complete loop is considered to be
a single execution.

3. Simply placing a Done icon in a visual program and setting the parameter done
to 0 (zero) will create an infinite loop.

Example Visual Programs
Bounce.net

SimpleGetSetLoop.net

 See Also
 First, ForEachMember, ForEachN, GetGlobal, GetLocal, SetGlobal,
 SetLocal

 Chapter 4, “Data Explorer Execution Model” on page 37 in IBM Visualization Data
Explorer User’s Guide.

 Chapter 2. Functional Modules 119

 Echo

 Echo

 Category
Debugging

 Function
Echoes a message.

 Syntax
Echo(string, ...);

 Inputs
Name Type Default Description

string value list or
string list

no default message to be printed

... additional messages to print

 Functional Details
This module prints its arguments as a string.

string is the value to be echoed.

A single Echo module can echo a maximum of 21 strings. In the user interface, the
default number of enabled string tabs is two. (Tabs can be added to the module
icon and removed with the appropriate ...Input Tab options in the Edit pull-down
menu of the VPE.)

The module can print:

� Integer, float, and string values
� Integer, float, and string lists
� 2-D and 3-D vectors.

If the input is of another type, the module will echo the object class (e.g, “Field”).

In the user interface, the output of Echo appears in the Message window.

 See Also
 Print, Describe

120 IBM Visualization Data Explorer: User’s Reference

 Enumerate

 Modules

 Enumerate

 Category
Realization

 Function
Generates a numeric list.

 Syntax
list = Enumerate(start, end, count, delta, method);

 Inputs
Name Type Default Description

start scalar or
vector

input
dependent

first value in list

end scalar or
vector

input
dependent

last value in list

count integer input
dependent

number of entries in list

delta scalar or
vector

input
dependent

numeric spacing

method string "linear" method

 Outputs
Name Type Description

list value list the numeric list

 Functional Details
This module creates a list of numeric values.

start specifies the first value in the list.

end specifies the last value in the list.

count specifies the number of items in the list.

delta specifies the numerical spacing between successive items in the
list. If start and end are vector values and this parameter is
specified, it must be specified as a matching vector.

method specifies the type of list to be created. At present, the specification
must be “linear.” The list created is a linear sequence of numbers
from start to end, containing count items or containing items
separated by a spacing interval of delta.

Note: Only three of the first four parameters are required. If all four are specified,
delta is ignored.

 Chapter 2. Functional Modules 121

 Enumerate

Example Visual Program
ContoursAndCaption.net

122 IBM Visualization Data Explorer: User’s Reference

 Equalize

 Modules

 Equalize

 Category
Transformation

 Function
Applies histogram equalization to a field.

 Syntax
equalized = Equalize(data, bins, min, max, ihist, ohist);

 Inputs
Name Type Default Description

data scalar field none data to be equalized

bins integer input
dependent

number of equalization bins

min scalar or field min of data lower bound of equalization

max scalar or field max of data upper bound of equalization

ihist field histogram of
data

input distribution

ohist field uniform
distribution

output distribution

 Outputs
Name Type Description

equalized scalar field histogram-equalized data

 Functional Details
This module equalizes an input data field so that the histogram of the output
approximates a specified distribution (ohist), which by default is a uniform
distribution.

If data specifies a series, the histogram of the entire series is used to construct the
probability distribution, which is then applied to each field in the series.

data is the scalar data field to be equalized.

bins is the number of bins to be used in creating the equalization
histogram. The default value is 100, unless data consists of byte
values. In that case, the default is: max – min + 1

 Chapter 2. Functional Modules 123

 Equalize

min and max specify the range of the data values to be equalized. Values
outside that range remain unchanged.

Notes:

1. If neither parameter is specified, the values used are the
minimum and maximum of the input field.

2. If min is a scalar value, it is the minimum value equalized.

3. If min is a data field, the minimum data value of that field is
used.

4. max is similarly interpreted.

5. If min is a data field and max is unspecified, the module uses
the minimum and maximum values of that field.

ihist is the histogram used to determine the equalization function
required, and by default it is the histogram of data. If ihist is
specified explicitly and the number of bins specified does not match
the number in the histogram, the module resamples the histogram
so that it contains the specified number.

ohist is the type of output histogram desired. By default, the module
equalizes to a uniform distribution. You can equalize to some other
distribution by specifying an appropriate histogram for this
parameter.

Note: A well-formed histogram (for ihist and ohist) consists of a field with a
“positions” component that defines the bins of the histogram; a “connections”
component that connects the positions; and a “data” component that contains the
number of items in each bin. The data should be connection dependent (“dep”
“connections”).

 Components
Equalize modifies the data component. All other components are unmodified.

Example Visual Programs
UsingEqualize.net

 See Also
 Filter, Morph, Histogram

124 IBM Visualization Data Explorer: User’s Reference

 Execute

 Modules

 Execute

 Category
Flow Control

 Function
Allows the user to change the execution state of a visual program without using the
Execute menu.

 Syntax
Available only in the user interface.

 Inputs
Name Type Default Description

action string "end" operation to be executed

 Functional Details
The action parameter takes any one of three arguments: “once,” “on change,” or
“end.” Note that “end” does not turn off the sequencer.

 See Also
 ManageColormapEditor, ManageControlPanel, ManageImageWindow,
 ManageSequencer

 Chapter 2. Functional Modules 125

 Executive

 Executive

 Category
Interface Control

 Function
Executes an executive command.

 Syntax
Executive(command, value);

 Inputs
Name Type Default Description

command string none command to be executed

value object no default command-dependent value

 Functional Details
This module tells the Data Explorer executive to run an internal system command.
In the user interface, it is available only through the Execute Script Command option
of the Options pull-down menu of the Message window. And with the exception of
the “print” command, it should be invoked only through the scripting language.

command is the executive command to be executed.

value is a command-dependent value.

The types of commands executed by the Executive module fall into four categories:

� printing system information
 � distributed processing
 � module definition
 � system functions.

Printing System Information: The following list summarizes the kinds of system
information available with the “print” command.

� Version information for Data Explorer:

Executive("print version");

� Information about the system environment:

Executive("print env");

� A module definition:

Executive("print mdf","modulename");

� A list of the execution groups:

Executive("print groups");

� A list of the attached hosts:

Executive("print hosts");

126 IBM Visualization Data Explorer: User’s Reference

 Executive

Modules

Distributed Processing in Script Language: Use the following commands to
control distributed processing in the script language. (In the user interface,
distributed processing should be controlled through the Execution Group
Assignment... option of the Connections pull-down menu in the VPE window. See
9.1, “Using Distributed Computation” on page 178 in IBM Visualization Data
Explorer User’s Guide.)

� To attach an execution group to a host requires the name of the host machine
and any options to be used when Data Explorer is started on that host. Data
Explorer establishes communication with the named host via a TCP/IP socket
connection. The syntax for attachment is:

Executive("group attach", "group1:hostname -dxopt1 -dxopt2 ...");

$sync

or

Executive("group attach", { "group1:hostname -dxopt1 -dxopt2 ...",

"group2:hostname -dxopt1 -dxopt2 ...",

"group3:hostname -dxopt1 -dxopt2 ...", ...});

$sync

� Detaching an execution group from a host requires only the group’s name in
the command:

Executive("group detach", "group1");

$sync

or

Executive("group detach", { "group1", "group2", ... });

$sync

� The “host disconnect” command terminates the connection to a host:

Executive("host disconnect", "hostname1");

$sync

or

Executive("host disconnect", { "hostname1", "hostname2", ... });

$sync

Note: These Executive calls must be followed by $sync, as shown.

Module Definition: To load the module definition file (mdf) of an outboard module
after Data Explorer has been started, use the script syntax shown here. (In the
user interface, use the Load Module Description(s)... option of the File
pull-down menu in the VPE or Image window.)

Executive("mdf file", "mdf_filename");

$sync

Note: The call to load the mdf file must be followed by $sync, as shown.

UserInteractor Definition To load a UserInteractor after Data Explorer has been
started, use the following script syntax:

Executive("loadinteractors", "userinteractor_filename");

$sync

Note: In the User Interface this can be done using the Execute Script Command
option in the Commands menu of the Message Window.

 Chapter 2. Functional Modules 127

 Executive

System Functions: The following commands execute system functions:

� To flush all variables in the internal cache:

Executive("flush cache");

� To flush all variables in the system dictionary:

Executive("flush dictionary");

� To flush all macro definitions from the system:

Executive("flush macros");

 Example
In this example, the execution groups “mine” and “yours” are attached to hosts
“ours” and “theirs” respectively. Also, Data Explorer is started with a memory
allocation of 50MB on the host “theirs.”

Executive("group attach",{"mine:ours","yours:theirs -memory 5ð"});

128 IBM Visualization Data Explorer: User’s Reference

 Export

 Modules

 Export

 Category
Import and Export

 Function
Writes an external data file.

 Syntax
Export(object, name, format);

 Inputs
Name Type Default Description

object object none object to write

name string none file name to write to

format string "dx" format in which to write the file

 Functional Details
The Export module writes object to the file name in the specified format.

You can specify format as dx, array, or vrml.

If format = dx, this specification can be followed by one or more of the following
modifiers:

byteorder Can be “msb” or “lsb” for most significant byte first or least
significant byte first, respectively.

dxformat Can be “ieee,” or “text” for IEEE floating point or ASCII format,
respectively. You can also specify “ascii” as a synonym for “text”,
and “binary” as a synonym for “ieee”.

where Can be one of the following three keywords:

“follows” The data for each object follows the header for that
object.

“1” The data for each object is contained in a separate data
section in the file.

“2” The data for each object is contained in a separate file.

For “follows” and “1,” the module writes a single file with the file
name (name.dx). For “2,” the module writes files. The object
headers are written to name.dx; the data are written to name.bin
(binary data) or name.data (text data). For more information, see
Appendix B, “Importing Data: File Formats” on page 241 in IBM
Visualization Data Explorer User’s Guide.

If format = “array,” this specification can be followed by one or both of the
following modifiers:

quotes Puts quotation marks around string data.

 Chapter 2. Functional Modules 129

 Export

headers Puts a header of descriptive information at the top of the file.

The data are written out in ASCII spreadsheet format (in columns). Only
position-dependent data are supported. All position-dependent data are written to
the output file. The first column will contain the positions themselves.

If object contains a group of fields, these are written out one after the other.

If format = “vrml”, or the extension of the filename is .wrl, then a VRML 2.0 format
file will be written. Because VRML files are written out in ASCII they can be very
large, so you should reduce the number of polygons before exporting if possible, for
example by using SimplifySurface. The object exported must be a field or group
with two- or three-dimensional positions. Data Explorer objects are exported using
VRML geometry nodes IndexFaceSet, IndexLineSet, PointSet, or ElevationGrid
depending on the connections element type and regularity of positions. Colors and
normals are exported with each object, if they exist.

Example Visual Program
UsingSwitchAndRoute.net

SimplifySurface.net

 See Also
 Import, SimplifySurface

130 IBM Visualization Data Explorer: User’s Reference

 Extract

 Modules

 Extract

 Category
Structuring

 Function
Extracts a component from a field.

 Syntax
output = Extract(input, name);

 Inputs
Name Type Default Description

input field none the field from which a
component is to be extracted

name string "data" the component to extract

 Outputs
Name Type Description

output object the named component

 Functional Details
This module creates an output object containing only the name component from the
input field. If input is a group, output is a group of array objects.

 Components
Only the components extracted are propagated to the output.

Example Visual Programs
MultipleDataSets.net

PlotTwoLines.net

UsingTextAndTextGlyphs.net

 See Also
 Mark, Remove, Rename, Replace, Unmark

 Chapter 2. Functional Modules 131

 FFT

 FFT

 Category
Transformation

 Function
Computes a fast Fourier transform.

 Syntax
output = FFT(input, direction, center);

 Inputs
Name Type Default Description

input field none field to be transformed

direction string "forward" direction of the transform

center flag 0 center the result of the transform

 Outputs
Name Type Description

output field transformed data

 Functional Details
This module computes the fast Fourier transform of a 2- or 3-dimensional regular
data set.

input specifies the field to be transformed.

direction is one of the following: “forward,” “inverse,” or “backward” (the last
two are interchangeable).

center specifies whether zero frequency should be placed at the center of
the transformed field or at the origin of the positions array.

Note: This module requires that the number of data items in each dimension be a
power of 2. If it is not, use the DFT module.

 Components
All scalar components of input are individually Fourier-transformed and output as
complex float. All other input components are propagated to the output. Thus a
float 2-vector input produces a complex 2-vector output.

Example Visual Programs
FFT.net

132 IBM Visualization Data Explorer: User’s Reference

 FFT

 Modules

 See Also
 DFT, Filter, Morph

 Chapter 2. Functional Modules 133

 FaceNormals

 FaceNormals

 Category
Rendering

 Function
Computes face normals for flat shading.

 Syntax
normals = FaceNormals(surface);

 Inputs
Name Type Default Description

surface geometry field none surface on which to compute
face normals

 Outputs
Name Type Description

normals field the surface with face normals

 Functional Details
This module computes face normals for a surface. A “normals” component is
necessary to produce shading when an object is rendered. In contrast to the
output of the Normals module, the normals produced by this module are always
connection dependent rather than position dependent. Therefore, when they are
rendered, the result is faceted shading.

When this module is used, any colors that reside at vertices are averaged for each
face at the time of rendering, resulting in a single color for each face.

The FaceNormals module assumes that the triangles or quads have consistent
point orderings (i.e., so that the directions of the face normals will be consistent
throughout the mesh).

The Shade module can also be used to compute normals for shading.

 Components
Creates a “normals” component that is dependent on connections. All other
components are propagated to the output.

Example Visual Program
Thunder_cellcentered.net

SIMPLE/FaceNormals.net

134 IBM Visualization Data Explorer: User’s Reference

 FaceNormals

 Modules

 See Also
 Isosurface, Normals, Shade

 Chapter 2. Functional Modules 135

 FileSelector

 FileSelector

 Category
Interactor

 Function
Produces file names as outputs.

 Syntax
Available only through the user interface.

 Outputs
Name Type Description

filename string full path name of selected file

basename string name of file (not including directory name)

 Functional Details
This module can be used whenever a file name is needed (e.g., as input to the
Import or ReadImage tools). It generates two output strings, both of which are file
names:

The first (filename) is the complete path to the file.

The second (basename) is the file name, without the path. (For more information,
see 7.1, “Using Control Panels and Interactors” on page 128 in IBM Visualization
Data Explorer User’s Guide.)

Notes:

1. FileSelector cannot be data driven.

2. The FileSelector dialog box can access only those files that are accessible to
the user interface.

Example Visual Program
MultipleDataSets.net

 See Also
 Integer, IntegerList, Scalar, ScalarList, Selector, String, StringList, Value,
 ValueList, Vector, VectorList

136 IBM Visualization Data Explorer: User’s Reference

 Filter

 Modules

 Filter

 Category
Transformation

 Function
Filters a field.

 Syntax
output = Filter(input, filter, component, mask);

 Inputs
Name Type Default Description

input field none data to be filtered

filter value or string "gaussian" filter to be used

component string "data" component to be operated on

mask value or string "box" rank-value filter mask

 Outputs
Name Type Description

output field filtered data

 Functional Details
The specified filter can be convolution or rank-value type.

Convolution filters, as the name implies, perform a convolution of the filter
coefficients with the input data (i.e., the output value at a given point is the sum of
the product of the filter coefficients and the corresponding values neighboring the
point in question).

Rank-value filters sort all of the elements under a mask surrounding the point in
question and either select or interpolate the value specified by the given rank. For
“min,” “max,” and “median” (special cases of rank-value filters), the rank values are
respectively 1, n, and (n + 1)/2, where n is the number of nonzero elements in the
mask.

Convolution filters are useful for neighborhood smoothing, edge detection, and
other gradient-based operations. Rank-value filters are useful for random-noise
removal and morphological operations.

input is the object to be filtered. Each field containing the component to
be filtered must also contain both a “positions” and a “connections”
component. The “connections” component must be regular.

filter specifies, by name, the filter to be used on input. See Table 2 on
page 139 for valid names.

 Chapter 2. Functional Modules 137

 Filter

component specifies the field component to be filtered. By default, Filter
operates on “data.” To filter an image, this parameter should specify
“colors.”

If the component to be filtered contains several channels (e.g., red,
green, and blue in an image), each channel is filtered
independently.

Table 2 on page 139 defines the filters and masks that can be specified by name.
While most of these are 2-dimensional, some are also available in 1- and
3-dimensional versions (as indicated by “1d” or “3d” after their names). If possible,
the module selects a filter that matches the dimensionality of input. However, if a
filter of lower dimensionality is available, it can (and must) be specified by
appending “1d” or “2d” to the name. That is, to specify a filter of lower
dimensionality, the specification must be explicit.

138 IBM Visualization Data Explorer: User’s Reference

 Filter

 Modules

Notes:

1. When a lower-dimensional filter is applied to higher-dimensional input, the input
is separated into lower-dimensional units that are filtered and then reassembled
into a higher-dimensional structure. For example, a 2-dimensional filter applied
to a 3-dimensional field will result in individual slices of the input being filtered
and then restacked.

2. Arbitrary filter kernels and masks may also be specified as matrices.

3. If the value specified by filter is a matrix, the module performs convolution
filtering and uses the values given as the filter coefficients. Filters must have
odd dimensions (e.g., 5 × 5), since the active point is defined as the central
point in the filter.

Table 2. Filter Names. The names listed here are all valid specifications for the filter
parameter. The specification is not case sensitive.

Filter Name Description

4-connected

0 1 0
1 1 1
0 1 0

/ 5

8-connected

1 1 1
1 1 1
1 1 1

/ 9 = box:2d

6-connected 3-D analog of 4-connected
26-connected 3-D analog of 8-connected
box Box filter
box:1d
box:2d
box:3d
compass:e
compass:n
compass:ne
compass:nw
compass:s
compass:se
compass:sw
compass:w
gaussian Same as gaussian:3x3
gaussian:2d Same as gaussian:3x3; can be used to force a 2-D

gaussian to be applied to 3-D data.
gaussian:3x3 3 × 3 Gaussian, σ = 1.0
gaussian:5x5 5 × 5 Gaussian, σ = 1.0
gaussian:7x7 7 × 7 Gaussian, σ = 1.0
isotropic
kirsch
laplacian Same as laplacian:2d
laplacian:1d
laplacian:2d
laplacian:3d
line:e-w
line:n-s
line:ne-sw
line:nw-se
prewitt
roberts
smoothed Same as prewitt
sobel

 Chapter 2. Functional Modules 139

 Filter

4. If the value specified in filter is a scalar or one of the strings “min,” “median,”
or “max,” the module performs rank-value filtering and uses the value of mask
for sorting the elements.

Masks, like filters, must have odd dimensions (e.g., 5 × 5). When specifying a
mask, remember that nonzero elements in the mask matrix signify inclusion;
zeros signify exclusion. In this way, the built-in matrices (e.g., “box”) can be
used interchangeably as filters or masks.

5. Data along the boundary are replicated to fill the overlap region for the filter.

 Components
Modifies the component specified by component. All other input components are
propagated to the output.

Example Visual Program
UsingFilter.net

 See Also
 Compute, Morph

140 IBM Visualization Data Explorer: User’s Reference

 First

 Modules

 First

 Category
Flow Control

 Function
Indicates whether the current iteration is the first iteration of a loop.

 Syntax
This module has no inputs.

 Outputs
Name Type Description

first flag Is this the first iteration of the loop?

 Functional Details
The output on the first iteration of a loop is 1 (one), and on all subsequent iterations
0 (zero).

Typically, loops are initiated with ForEachMember or ForEachN, although they can
also be implemented with a Get/Set pair and Done. First is often useful for
resetting the GetGlobal tool at the beginning of a loop. Note that if GetLocal is
used in a loop, First is unnecessary.

Note: If this module is used in the scripting language, the results are defined only
if they are used inside a macro.

 See Also
 Done, ForEachMember, ForEachN, GetGlobal, GetLocal, SetGlobal,
 SetLocal

 Chapter 4, “Data Explorer Execution Model” on page 37 in IBM Visualization Data
Explorer User’s Guide.

 Chapter 2. Functional Modules 141

 ForEachMember

 ForEachMember

 Category
Flow Control

 Function
Iterates through the members of a group or the items of an array.

 Syntax
member, index, last = ForEachMember(object);

 Inputs
Name Type Default Description

object group, value
list, or string
list

(none) object to be iterated through

 Outputs
Name Type Description

member object current member

index integer index number of member

last flag status of loop

 Functional Details
This module initiates an iteration for each member of a group or item in an array
unless execution is terminated earlier by Done. In the user interface, this module
would usually be part of a macro, and only the contents of the macro would be
executed for each iteration of the loop. If this module is placed in the top level
visual program, the entire program will be executed during the loop.

Typically, loops are initiated with ForEachMember or ForEachN, although they can
also be implemented with a Get/Set pair and Done.

Note: If this module is used in the scripting language, the results are defined only
if they are used inside a macro.

object is the object to be iterated over: either a group or a list.

This module has three outputs:

member identifies the member currently being iterated.

index is the index number of the member being iterated (in a zero-based
counting system).

last is a flag indicating whether or not this is the last iteration through
the loop.

142 IBM Visualization Data Explorer: User’s Reference

 ForEachMember

 Modules

Example Visual Program
Accumulate.net

 See Also
 Done, First, ForEachN, GetGlobal, GetLocal, SetGlobal, SetLocal

 Chapter 4, “Data Explorer Execution Model” on page 37 in IBM Visualization Data
Explorer User’s Guide.

 Chapter 2. Functional Modules 143

 ForEachN

 ForEachN

 Category
Flow Control

 Function
Iterates through the specified set of integers.

 Syntax
current, last = ForEachN(start, end, delta);

 Inputs
Name Type Default Description

start integer none value of the first integer through
the loop

end integer none value of the last integer through
the loop

delta integer 1 numerical interval between
successive integers output by
the loop

 Outputs
Name Type Description

current integer the current integer

last flag status of loop

 Functional Details
This module initiates an iteration for each integer in the set unless execution is
terminated earlier by Done. Its function is similar to that of a “for” in standard
programming languages. In the user interface, this module would usually be part of
a macro, and only the contents of the macro would be executed for each iteration
of the loop. If this module is placed in the top level visual program, the entire
program will be executed during the loop.

Typically, loops are initiated with ForEachMember or ForEachN, although they can
also be implemented with a Get/Set pair and Done.

Note: If this module is used in the scripting language, the results are defined only
if they are used inside a macro.

start is the value of the first integer of the loop

end is the value of the last integer of the loop

delta is the interval between successive integers of the loop

This module has two outputs:

current is the value of the integer currently being iterated.

144 IBM Visualization Data Explorer: User’s Reference

 ForEachN

 Modules

last is a flag indicating whether or not this is the last iteration through
the loop.

Example Macro and Program
FactorialMacro.net

Factorial.net

 See Also
 Done, First, ForEachMember, GetGlobal, GetLocal, SetGlobal, SetLocal

 Chapter 4, “Data Explorer Execution Model” on page 37 in IBM Visualization Data
Explorer User’s Guide.

 Chapter 2. Functional Modules 145

 Format

 Format

 Category
Annotation

 Function
Formats a string.

 Syntax
string = Format(template, value, ...);

 Inputs
Name Type Default Description

template string none format control string

value value list or
string

no default value to format

... more values to format

 Outputs
Name Type Description

string string formatted string object

 Functional Details
This module uses a format-control string and input values to create a formatted
output string. Each insertion is matched to a format-control specification, which
always begins with a % symbol. Strings, scalars, integers, and vectors can be
formed into output strings.

template is the format-control string used in creating the formatted output. It
resembles a C-language printf format string.

Data Explorer copies all characters other than format specifications
to the output (see next parameter).

value is the value to be placed in the output string. The character
following the % controls the type of conversion:

c single characters

d integers

f floating point (fixed number of digits following the decimal point)

g general (scientific notation if appropriate)

s strings.

Note: f and g will also format 2- and 3-vectors and lists.

To output a %, use %%. You can insert numbers between the % and
the conversion character to control the width of the field and the
number of significant digits formatted. A minus sign (−) left-justifies

146 IBM Visualization Data Explorer: User’s Reference

 Format

 Modules

the output in the field; the default is right-justification. A format
control string of

"%-1ð.4f"

indicates left justification of a floating-point number, minimum of 10
columns total, with 4 places to the right of the decimal point.

A single call to the Format module can format a maximum of 21 values. In the
user interface, the default number of enabled value tabs is two. (Tabs can be
added to the module icon and removed with the appropriate ...Input Tab options
in the Edit pull-down menu of the VPE.)

Script Language Examples
1. In this example, value1 is set to 32.567799

value1 = 32.567799;

2. This outputs the string “number = 32.567799.”

output = Format("number = %f", value1);

Echo(output);

3. This example outputs the string “number = 32.57.”

output = Format("number = %3.2f", value1);

Echo(output);

4. This example outputs the string “number = 32.57.”

output = Format("number = %11.2f", value1);

Echo(output);

5. In this example, value2 is set to 134569888 and value3 is set to “New York.”

value2 = 134569888;

value3 = "New York";

6. This example outputs the string
“number = 134569888.000000, state = New York.”

output = Format("number = %f, state = %s", value2, value3);

Echo(output);

7. This example outputs the string “number = 134569888, state = New York.”

output = Format("number = %1ð.ðf, state = %s", value2, value3);

Echo(output);

8. This example outputs the string “number = 1.3457e+08, state = New York.”

output = Format("number = %g, state = %s", value2, value3);

Echo(output);

9. This example outputs the string
“number = 1.3457e+08, state = New York.”

output = Format("number = %g, state = %15s", value2, value3);

Echo(output);

 Chapter 2. Functional Modules 147

 Format

Example Visual Programs
ContoursAndCaption.net

GeneralImport1.net

FormatListMacro.net

InvalidData.net

PlotTwoLines.net

SalesOnStates.net

Sealevel.net

 See Also
 Caption, Echo, Text

148 IBM Visualization Data Explorer: User’s Reference

 GetGlobal

 Modules

 GetGlobal

 Category
Flow Control

 Function
Retrieves an object from the cache. State is maintained between executions of any
macros containing GetGlobal.

 Syntax
object, link = GetGlobal(object, reset);

 Inputs
Name Type Default Description

object object none object to be output if nothing has
been set

reset flag 0 0: the object cached by
SetGlobal (if there is one) is
passed to output
1: object (not the cached object)
is passed to output.

 Outputs
Name Type Description

object object retrieved object

link string link to corresponding SetGlobal module

 Functional Details
GetGlobal works with SetGlobal to place objects in and retrieve them from the
cache. GetGlobal is equivalent to (and replaces) Get in previous versions of Data
Explorer. GetGlobal differs from GetLocal in that GetLocal and SetLocal are used
when the state maintained by the Get/Set pair should be reset when a macro
containing these modules is reexecuted. In contrast, GetGlobal and SetGlobal will
maintain state when the macro is reexecuted. Note that for a single execution of a
macro (for example, throughout the execution of an entire loop), state is of course
maintained by both GetLocal and GetGlobal.

object specifies the object to be output by GetGlobal if nothing has been
placed in the cache (e.g., as on the first execution of a visual
program) or if reset = 1.

reset causes the module to output object. If this parameter is set to 0
(zero), GetGlobal retrieves the last object placed in the cache by
SetGlobal (if there is one). Otherwise, the module passes object to
the output.

The link output is to be connected to the link input of the corresponding
SetGlobal module. GetGlobal must be used with SetGlobal, rather than with

 Chapter 2. Functional Modules 149

 GetGlobal

SetLocal. SetGlobal must be executed on the same machine as GetGlobal (i.e., it
cannot be distributed to a different machine).

Notes:

1. The Reset interactor can be used to provide reset. However, if you are using
GetGlobal and SetGlobal in a loop, you should not use the Reset interactor to
provide this parameter, because the Reset interactor will output the reset value
for one execution, which is an entire execution of the loop. In general, there are
performance advantages to using GetLocal, rather than GetGlobal with the First
module supplying the reset parameter. While the result will be the same, using
GetLocal will ensure that all previous results of the macro will be cached and
ready for reuse. If you use GetGlobal, only the last result of the macro is
cached.

2. Whenever there is a GetGlobal inside a macro, all outputs of the macro will be
stored in the cache with the cache attribute “cache last”. In other words,
whenever any input to the macro changes, the old results of the macro will be
deleted from the cache and the new results will be stored in the cache. There
is no way for the user to turn off caching for this macro. The results are also
locked in the cache, and cannot be flushed. This is because GetGlobal
maintains state for the macro that may not be reproduced given the inputs to
the macro. Inconsistent behavior might result if results were not cached in this
way.

3. Previously created visual programs which use Get and Set will be run using
GetGlobal and SetGlobal. You can explicitly change your Gets and Sets to
either GetGlobals and SetGlobals or GetLocals and SetLocals using the Edit
menu (see Assign Get/Set Scope on page 158 in IBM Visualization Data
Explorer User’s Guide). There are performance advantages to using GetLocal
and SetLocal whenever you do not need to maintain state between executions
of your macro which uses Gets and Sets. A rule of thumb is that if you are
using the First module to supply the reset parameter of Get, you should use
GetLocal instead of GetGlobal (and the use of First is then unnecessary).

A detailed description of the behavior and use of the GetLocal, GetGlobal,
SetLocal, and SetGlobal modules can be found in 4.6, “Preserving Explicit State”
on page 45 in IBM Visualization Data Explorer User’s Guide.

Example Visual Programs
SIMPLE/GetSet.net

 See Also
 Done, First, SetGlobal, GetLocal, SetLocal, Reset

 Chapter 4, “Data Explorer Execution Model” on page 37 in IBM Visualization Data
Explorer User’s Guide.

150 IBM Visualization Data Explorer: User’s Reference

 GetLocal

 Modules

 GetLocal

 Category
Flow Control

 Function
Retrieves an object from the cache. State is not maintained between executions of
any macros containing GetLocal.

 Syntax
object, link = GetLocal(object, reset);

 Inputs
Name Type Default Description

object object none object to be output if nothing has
been set

reset flag 0 0: the object cached by SetLocal
(if there is one) is passed to
output
1: object (not the cached object)
is passed to output.

 Outputs
Name Type Description

object object retrieved object

link string link to corresponding SetLocal module

 Functional Details
GetLocal works with SetLocal to place objects in and retrieve them from the cache.
GetLocal differs from GetGlobal in that GetLocal and SetLocal are used when the
state maintained by the Get/Set pair should be reset when a macro containing
these modules is reexecuted. In contrast, GetGlobal and SetGlobal will maintain
state when the macro is reexecuted. Note that for a single execution of a macro
(for example, throughout the execution of an entire loop), state is of course
maintained by both GetLocal and GetGlobal.

object specifies the object to be output by GetLocal if nothing has been
placed in the cache (e.g., as on the first execution of a visual
program) or if reset = 1.

reset causes the module to output object. If this parameter is set to 0
(zero), GetLocal retrieves the last object placed in the cache by
SetLocal (if there is one). Otherwise, the module passes object to
the output.

The link output is to be connected to the link input of the corresponding SetLocal
module. GetLocal should always be used with SetLocal, not with SetGlobal.
SetLocal must be executed on the same machine as GetLocal (i.e., it cannot be
distributed to a different machine).

 Chapter 2. Functional Modules 151

 GetLocal

It is not necessary to use the First tool to provide input to the reset parameter of
GetLocal inside a macro, since this is done automatically whenever the macro is
reexecuted.

A detailed description of the behavior and use of the GetLocal, GetGlobal,
SetLocal, and SetGlobal modules can be found in 4.6, “Preserving Explicit State”
on page 45 in IBM Visualization Data Explorer User’s Guide.

Example Visual Programs
Accumulate.net

Bounce.net

SimpleGetSetLoop.net

 See Also
 Done, First, SetLocal, GetGlobal, SetGlobal, Reset

 Chapter 4, “Data Explorer Execution Model” on page 37 in IBM Visualization Data
Explorer User’s Guide.

152 IBM Visualization Data Explorer: User’s Reference

 Glyph

 Modules

 Glyph

 Category
Annotation

 Function
Creates a glyph (visual representation) for each data value in a data field.

 Syntax
glyphs = Glyph(data, type, shape, scale, ratio, min, max);

 Inputs
Name Type Default Description

data field none the set of points to which glyphs
will be assigned

type scalar, string,
field, or group

input
dependent

glyph type

shape scalar 1.0 factor to describe the shape of
the glyph (must be greater than
0)

scale scalar input
dependent

scale factor for size of glyphs
(must be greater than 0)

ratio scalar 0.05 or 0 ratio in size (scalars or vectors)
between smallest and largest
glyphs

min scalar or field min of data or
0

data value that gets the
minimum-size glyph

max scalar or field max of data data value that gets the
maximum-size glyph

 Outputs
Name Type Description

glyphs color field set of glyphs

 Functional Details
This module creates a glyph, or representation, for each data value in a data field
(data). For data that are dependent on positions, a glyph is placed at the
corresponding position. For data that are dependent on connections, a glyph is
placed at the center of the corresponding connection element.

The Glyph module differs from AutoGlyph in its interpretation of the scale
parameter. With Glyph, you can specify a multiplication factor that is applied to
each data value to obtain the size of the glyph in world units. With AutoGlyph, the
scaling is relative to the default glyph size.

 Chapter 2. Functional Modules 153

 Glyph

To create sphere glyphs with a radius equal to the data value, set scale to 1 and
both ratio and min to 0. To create arrow glyphs with length equal to the magnitude
of the data value, set scale to 1.

For descriptions of the parameters, see “AutoGlyph” on page 37.

 Components
Creates new “positions” and “connections” components. In the case of a 3-D glyph,
a “normals” component is added for shading purposes. All components that match
the dependency of the “data” component are propagated to the output, all others
are not. If the input has “binormals” and “tangent” components, they are not
propagated to the output.

Example Visual Programs
GeneralImport1.net

Imide_potential.net

PlotTwoLines.net

ProbeText.net

 See Also
 AutoGlyph, Sample

154 IBM Visualization Data Explorer: User’s Reference

 Gradient

 Modules

 Gradient

 Category
Transformation

 Function
Computes the gradient of a scalar field.

 Syntax
gradient = Gradient(data, method);

 Inputs
Name Type Default Description

data scalar field none field whose gradient is to be
computed

method string "manhattan" method to use

 Outputs
Name Type Description

gradient vector field gradient field

 Functional Details
data is the scalar field.

method specifies how the gradient will be computed. At present, the only
method supported is “manhattan.”

 Components
Modifies the “data” component. All other input components are propagated to the
output.

Example Visual Programs
ComputeOnData.net

Imide_potential.net

InvalidData.net

UsingCompute2.net

UsingIsosurface.net

SIMPLE/Gradient.net

 See Also
 DivCurl, Normals

 Chapter 2. Functional Modules 155

 Grid

 Grid

 Category
Realization

 Function
Creates an output geometry.

 Syntax
grid = Grid(point, structure, shape, density);

 Inputs
Name Type Default Description

point vector none starting point from which the grid
is constructed

structure string "brick" type of grid

shape vector list structure
dependent

size and shape of structure

density integer list {3, 3, ...} number of points to be put on
each grid element

 Outputs
Name Type Description

grid geometry field output grid

 Functional Details
point is the starting point from which the grid is constructed.

structure specifies the type of grid geometry and must be one of the
following: “brick ” (the default), “crosshair,” “ellipse,” “line,” “point,”
or “rectangle.”

For a structure specified as “point,” it is neither necessary nor useful
to specify shape or density. For the other valid structures, the
output object extends symmetrically from point.

shape is a list of vectors that characterize the grid structure, specifying its
size and orientation: A line requires one vector; rectangles and
ellipses, two vectors; and bricks and crosshairs, three vectors. For
“brick,” the default shape specification is {[1 0 0] [0 1 0] [0 0 1]}; for
other structures, the default specification is the appropriate
corresponding vector list.

density determines the number of points in the output. For crosshairs and
bricks, the specification is a list of length 3; for rectangles, a list of
length 2; and for the other structures, a single integer. In each
case, density is the number of points along the edge in question.
Bricks and rectangles are filled.

156 IBM Visualization Data Explorer: User’s Reference

 Grid

 Modules

Note: Specifying point and shape as 2-dimensional vectors can produce a
2-dimensional output grid for the structures “ellipse,” “line,” “point,” and “rectangle.”

 Components
Creates “positions” and “connections” components.

Example Visual Programs
InvalidData.net

MakeLineMacro.net

PlotLine.net

PlotTwoLines.net

ThunderStreamlines.net

SIMPLE/Grid.net

 See Also
 Construct, Glyph, Map, Streakline, Streamline

 Chapter 2. Functional Modules 157

 Histogram

 Histogram

 Category
Transformation

 Function
Constructs a histogram from input data and computes the median.

 Syntax
histogram, median = Histogram(data, bins, min, max, out);

 Inputs
Name Type Default Description

data scalar list or
vector list or
scalar field or
vector field or
series

none field to be operated on

bins integer or
vector

256 for bytes,
100 otherwise

number of bins in histogram

min scalar or
vector or field

min. of data minimum value to operate on

max scalar or
vector or field

max. of data maximum value to operate on

out flag or vector 0 0: exclude out-of-range values
1: include out-of-range values

 Outputs
Name Type Description

histogram field or series the histogram

median scalar median of the input data

 Functional Details
The median is determined from an interpolation performed in the bin containing the
median element (or elements, if there are an even number of samples).

data is the data whose frequency distribution is to be computed and then
represented in a histogram. data can consist of scalars, 2-vectors,
or 3-vectors, with resulting one-dimensional, two-dimensional, or
three-dimensional histograms, respectively.

bins specifies the number of bins into which the range from min to max
will be divided. If data consists of vectors, then bins can be a
vector of the same length specifying the number of bins in each
dimension.

min and max specify the range of values for which the histogram is computed.

� If neither parameter is specified, the values used are the
minimum and maximum of the input data values.

158 IBM Visualization Data Explorer: User’s Reference

 Histogram

 Modules

� If min is a scalar value, it is the value used.
� If min is a data field, the minimum data value of that field is

used.
� max is similarly interpreted.
� If min is a data field and max is unspecified, the module uses

the minimum and maximum values of that field.
� If data consists of vectors, then min and max may also consist

of vectors of the same length to specify the range in each
dimension. Otherwise, the values given for min and max will
apply to each dimension.

out specifies whether the module ignores data values outside the range
of min and max or includes them in the first and last bins
respectively. If data consists of vectors, then out may be a vector
of the same length specifying how to treat each dimension.

Notes:

1. For the output, a “positions” component is constructed that consists of bins +1
points, corresponding to the boundaries between bins.

2. A regular “connections” component is constructed that consists of a set of line
segments connecting the end points.

3. The “data” component, which is connection dependent, contains the counts for
the corresponding bin.

4. The interval for each bin is closed on the min side and open on the max side.
To include the maximum data value:

� set out to include outlying values

or
� set max to a value slightly larger than the maximum data value.

To see the results of Histogram for scalar data, pass its output to the Plot module.
For 2-vector data, pass its output to the RubberSheet module with a scale factor of
1. For 3-vector data, use either the Isolate module or use Include followed by
ShowBoundary.

 Components
Creates new “positions,” “connections,” and “data” components. The data,
representing the number of items in each bin, is connections dependent.

Example Visual Program
UsingEqualize.net

SIMPLE/Histogram.net

 See Also
 Equalize, Plot, Scale

 Chapter 2. Functional Modules 159

 Image

 Image

 Category
Rendering

 Function
Renders an object and displays it as an image.

 Syntax
This module is accessible only through the user interface.

 Inputs
Name Type Default Description

object object none object to be rendered and
displayed

renderMode flag 0 software=0, hardware=1

defaultCamera camera no default the reset camera

resetCamera camera no default reset the camera

bkgndColor vector or
string

"black" image background color

throttle scalar 0 minimum time between image
frames (in seconds)

recordEnable flag 0 enable frame recording

recordFile string "image" file name for frame recording

recordFormat string "rgb" file format for frame recording

recordRes integer no default Image resolution for recording

recordAspect scalar no default Image aspect ratio for recording

axesEnabled flag 0 produce axes

axesLabels string list no labels labels for axes

axesTicks integer or
integer list

15 number of major tick marks (0 to
suppress)

axesCorners vector list or
object

input object bounds of axes

axesFrame flag 0 flag for axes frame type

axesAdjust flag 1 whether to adjust the end points
to match tick marks

axesCursor vector no cursor cursor position

axesGrid flag 0 show grid lines on background

axesColors vector list or
string list

appropriate
color(s)

color(s) for annotation

axesAnnotate string list "all" annotation objects to be colored

axesLabelScale scalar 1.0 scale factor for labels

axesFont string "standard" font for labels

intrctnMode string "none" sets interaction mode of window

160 IBM Visualization Data Explorer: User’s Reference

 Image

 Modules

Name Type Default Description

title string "Image" Image title

axesXTickLocs scalar list no default locations for x-axis ticks

axesYTickLocs scalar list no default locations for y-axis ticks

axesZTickLocs scalar list no default locations for z-axis ticks

axesXTickLabels string list no default labels for x-axis ticks

axesYTickLabels string list no default labels for y-axis ticks

axesZTickLabels string list no default labels for z-axis ticks

 Outputs
Name Type Description

renderable object object, ready for rendering

camera camera camera used

where window window identifier for the Image window

 Functional Details
This module functions much like a combination of AutoCamera and Display.
However, it activates the Data Explorer direct-interaction features of the Image
window, which are unavailable when you use the combination of AutoCamera and
Display. These features include resizing of the image, pan/zoom, 3-D cursors,
mouse-driven rotation, navigation in the image, mouse control of the look-to and
look-from points, and direct user control of Image-window size. The View
Control... dialog box (accessed from the Options pull-down menu in the Image
window) permits explicit specification of these features.

Note: Since Image both renders and displays its input, you would not normally
pass it an already existing image (because it would be interpreted as a large
number of quadrilaterals). If you do have an image (e.g., previously imported or
rendered by one of the appropriate modules), you should use the Display tool,
without specifying a camera.

While the Image tool is only available while using the User Interface, you can
implement your own interactions with an image using SuperviseWindow,
SuperviseState, and Display. Thus direct interaction can be implemented from a
stand-alone program using DXCallModule (see 12.10, “Module Access” on
page 127 in IBM Visualization Data Explorer Programmer’s Reference), from a
program interacting with Data Explorer using DXLink (see Chapter 16, “DXLink
Developer's Toolkit” on page 157 in IBM Visualization Data Explorer Programmer’s
Reference), or even from a script (see Chapter 10, “Data Explorer Scripting
Language” on page 187 in IBM Visualization Data Explorer User’s Guide). See
“SuperviseWindow” on page 336 for a discussion of these tools.

If it is installed, hardware graphics acceleration is available as one of the Rendering
Options... in the Options pull-down menu of the Image window.

Usually you will use only the first parameter, object. The other parameters, which
are hidden by default, control aspects of the image which can also be modified by
various pulldowns in the menu of the Image window.

 Chapter 2. Functional Modules 161

 Image

To open the Configuration dialog box for Image, you select the Image tool and use
the Edit menu Configuration option.

object specifies the object to be rendered.

renderMode specifies whether the rendering should be software (renderMode=0)
or hardware (renderMode=1).

defaultCamera is the camera to be used when the Reset button in the View
Control dialog box or the resetCamera parameter (see below) is set
to 1 (one).

resetCamera (when set to 1) resets the camera to

� defaultCamera if that parameter is provided, or
� the standard “front view” if defaultCamera is not provided.

bkgndColor specifies the color of the image background as either an RGB color
or a color-name string.

throttle specifies a minimum interval between successive image displays.
The default is 0 (no delay).

recordEnable specifies that the created images are to be saved to a file.

recordFile is the name of the file to which images are saved.

recordFormat specifies the format in which the images are to be written. See
“WriteImage” on page 374 for more information.

recordRes specifies the horizontal resolution (in pixels) of the recorded image.

recordAspect specifies the aspect ratio (i.e., the ratio of vertical to horizontal size)
of the recorded image.

axesEnabled specifies that a set of axes is to be drawn around object.

axesLabels...axesFont
are (except for “axes” in the name) the same as the corresponding
parameters described for “AutoAxes” on page 27.

intrctnMode specifies one of the following as the interaction mode of the Image
window:

"camera" "none" "roam"

"cursors" "panzoom" "rotate"

"navigate" "pick" "zoom"

title is the title of the Image window.

axesXTickLocs specifies the list of x-axis tick locations (see “AutoAxes” on
page 27)

axesYTickLocs specifies the list of y-axis tick locations (see “AutoAxes” on
page 27)

axesZTickLocs specifies the list of z-axis tick locations (see “AutoAxes” on
page 27)

axesXTickLabels
specifies the list of x-axis tick labels (see “AutoAxes” on page 27)

axesYTickLabels
specifies the list of y-axis tick labels (see “AutoAxes” on page 27)

axesZTickLabels
specifies the list of z-axis tick labels (see “AutoAxes” on page 27)

162 IBM Visualization Data Explorer: User’s Reference

 Image

 Modules

The first output of the Image tool (renderable) is the object just before rendering
(including, for example, any axes attached).

The second output (camera) is the camera used to render object (including, for
example, any zooms or rotations applied by direct interactors).

The third output where is the window identifier for the Image window. This can be
used, for example, by ReadImageWindow to read back the pixels from the image.

Recording images displayed in the Image window

1. select Save Image... or Print Image... in the File pull-down menu, or
2. use the record... parameters (see above).

Caching of Objects Internally in the Image Tool: The Image tool is
implemented as a macro comprising a number of modules. You can control the
caching of intermediate results between these modules using the special “Internal
Caching” option in the module’s configuration dialog box (see IBM Visualization
Data Explorer User’s Guide, “Using Data Explorer Effectively”.

How the Image Window Centers on an Object: The first time the Image tool
executes after being placed on the canvas, it “centers” itself on object. From then
on, it maintains that viewpoint unless the user explicitly changes it (e.g., by using
rotate, zoom, roam, etc.). Thus, if the object is moving in space, you may at times
see only part of it or even none of it. You can “reset” the camera at any time with
ResetCamera in the View Control... dialog box or by using the Image parameter
resetCamera.

Getting the Output Image: If you want to extract the rendered image so that, for
example, you can filter it or arrange it with other images (see “Filter” on page 137),
then simply pass the first and second outputs of Image to the first and second
inputs of Render. Alternatively, pass the where output to the ReadImageWindow
module. Using the ReadImageWindow module allows you to capture the pixels
from a hardware-rendered image. Note however, that for some platforms, if the
image window is obscured (by another window for example) the obscured pixels
may not be present in the captured image.

Tracking the Image window with another window: If you want to have two
images visible, and want to alternatively control the viewpoint, resolution, etc. of
one of the windows while having the second window display a different object from
the same viewpoint, simply use the camera output of the Image tool as input to the
camera input of a Display tool. The first input of Display should be the other object
you wish to view. For an example, see WindVorticity.net.

For more information on using the Image tool in the user interface, see 6.1, “Using
the Image Window” on page 74 in IBM Visualization Data Explorer User’s Guide.
Also see Display for information under the following headings:

“Differences between Hardware and Software Rendering” on page 115,
“Rendering Approximations” on page 114,
“Using Default Color Maps” on page 111,
“Using Direct Color Maps” on page 111,
“Changing Rendering Properties” on page 112,
“Gamma Correction” on page 112,

 Chapter 2. Functional Modules 163

 Image

“Image Caching” on page 112,
“Texture Mapping” on page 116

See also Color for information on “Coloring Objects for Volume Rendering” on
page 113.

Example Visual Programs
Nearly every example visual program uses the Image tool. ImageTool.net uses
the hidden-by-default parameters. Image_wo_UI.net demonstrates a substitute
Image macro using SuperviseWindow, SuperviseState, and Display, which can be
used independent of the User Interface.

 See Also
 Arrange, AutoCamera, Display, Render, AutoAxes, SuperviseWindow,
 SuperviseState

164 IBM Visualization Data Explorer: User’s Reference

 Import

 Modules

 Import

 Category
Import and Export

 Function
Reads an external data file.

 Syntax
data = Import(name, variable, format, start, end, delta);

 Inputs
Name Type Default Description

name string none name of file containing data to
be read, or “!command”

variable string or string
list

format
dependent

variable to be read

format string file extension
or content

"dx," “general,” “netcdf,” “CDF,”
“hdf,” “cm”

start integer first frame first data frame to be imported

end integer last frame last data frame to be imported

delta integer 1 increment between frames

 Outputs
Name Type Description

data object object containing requested variables

 Functional Details
From an external data file this modules creates Data Explorer objects that can be
processed by other modules.

name is the name of the data file being imported. If the parameter
specifies an absolute path name, the system attempts to open the
file. Otherwise, it first searches the current directory (i.e., the
directory from which Data Explorer was invoked) and then, if
necessary, the directories specified by the environment variable
DXDATA (see C.1, “Environment Variables” on page 292 in IBM
Visualization Data Explorer User’s Guide).

Note: This parameter can also specify an external filter (see
External filters on page 168).

If name contains a series, the parameters start, end, and delta can
be used to import a portion of the data (see parameter descriptions
below).

variable specifies the variable(s) to be imported.

 Chapter 2. Functional Modules 165

 Import

format specifies the format of the data to be imported. Valid format names
are: “dx,” “general,” “netcdf,” “CDF,” “hdf,” and “cm.” These
keywords can also be used as extensions on file names.

start and end
specify the first and last data frame to be imported from a data file
containing a series.

delta specifies the increment in counting the data frames in the range
from start to end. For example, if the first and last frames are 10
and 20 respectively, and delta = 2, the output data is a series
group with six members (frames 10, 12, 14,...).

For Future Reference

If the data set being imported is changed (e.g., by editing) during a Data
Explorer session, and if the cache is enabled (the default condition), it may be
necessary to reinitialize the Data Explorer executive to access the new data.
To do so, select Reset Server in the Connections pull-down menu of the VPE
window.

Resetting the server flushes the executive cache. The next time the visual
program is invoked, the entire network executes (not just the portions affected
by changes) and Import will reaccess the data set.

Specifying that the module’s output not be cached has the same effect. Select
the appropriate option in:

� the “Cache” option menu of the module’s configuration dialog box, or
� the “Set Output Cacheability” option menu in the Edit pull-down menu.

Note that it may be necessary to apply the same restriction to any module
downstream from Import.

To specify that no outputs are to be cached, use the -cache off option
when starting Data Explorer.

Data Explorer format files. A Data Explorer data file consists of one or more
header and data sections that describe the structure and values of user data. The
header section is a text description of one or more Data Explorer objects, and the
data section is either a text or binary representation of the data values.

If variable specifies more than one object, the module creates a group and each
object is added to the group by name. If variable is not specified, the default
object is imported. This object can be specified with the default keyword in the
Data Explorer file format (see B.2, “Data Explorer Native Files” on page 244 in IBM
Visualization Data Explorer User’s Guide). If it is not specified, the default object is
the last object defined in the data file.

Any Data Explorer object in a Data Explorer data file can be specified for import,
including Lights, Cameras, and Transforms, as well as more common objects such
as Series, Groups, and Fields. The data can be in a separate file from the header,
and header and data sections can be interspersed. And the data can be specified
in a variety of formats (see see B.2, “Data Explorer Native Files” on page 244 in
IBM Visualization Data Explorer User’s Guide).

166 IBM Visualization Data Explorer: User’s Reference

 Import

 Modules

General array importer files. You can use the general format described in 5.1,
“General Array Importer” on page 63 in IBM Visualization Data Explorer QuickStart
Guide to import data from various file formats and convert the data to objects. This
format allows you to describe the structure of your data so that Data Explorer can
create Data Explorer objects from it. If you do not specify a variable, then all
variables are imported.

Normally, the name parameter in this case is the general array header file.
However, the name parameter can be the data file if the extended form of the
format parameter includes the header file as a template. The format parameter
can also include any set of keyword-value pairs as a comma-separated list. The
specified values are used instead of those in the header file. This format is useful
for data files with similar header files where only the size of the data changes. An
example for the grid keyword is:

format =“general, template=headerfile, grid=numx x numy x numz ...”

An example parameter for the points keyword is:

format = "general, template=headerfile, points=n"

You may also omit template=headerfile if all the necessary information is specified
by the keyword-value pairs.

netCDF files. When the netCDF file is opened, variables matching the variable
parameter are read in as field objects. If you give no field name, all fields are read
in and placed as separate fields in a group. Each group member is named using
the name of the field in the netCDF file. If more than one variable has the same
field name, a composite field is created.

You can import both regular and irregular data. If the data are regular, nonzero
origins and non-unit spacing can be handled. You can also import scalar, vector,
and tensor data. For irregular data, “positions” and “connections” are determined
from information in the netCDF variable attributes associated with the field.
Additional components can also be read in and added to the field, based on
netCDF attribute information.

For a detailed description of the attributes required in a netCDF file, and an
example of the correct format, see B.4, “netCDF Files” on page 281 in IBM
Visualization Data Explorer User’s Guide.

CDF files. When the CDF is opened, variables matching the “variable” parameter
are read in as fields. If “variable” is not specified, then all variables are imported
and placed as fields in a group. Each group member is named using the name of
the field (CDF variable) in the CDF. If the CDF contains records, then variable(s)
are imported as a series. Some CDF variables become the “positions” component
of the field, while others become the “data” component of the field. For a series,
the values of the record-varying variable become the “series positions” attribute(s).
Variable and global attributes present in the CDF are imported as object attributes.
Only CDF r-variables are supported. See IBM Visualization Data Explorer User’s
Guide for more information on importing data from a CDF.

HDF files. Scientific DataSets are read in as fields. If there are more than one
DataSet in the HDF file, you can specify the variable as a number corresponding to
the position of the data set (0 corresponds to the first file). If no variable is

 Chapter 2. Functional Modules 167

 Import

specified, all fields are read in and placed as separate fields in a group. Each
group member is named using the label (if it exists) from the HDF file.

If scales are present, they are interpreted as “positions” with regular “connections.”
Otherwise, the positions are a regular grid with regular connections. For more
information on HDF, see B.6, “HDF Files” on page 288 in IBM Visualization Data
Explorer User’s Guide.

CM files. Import will import saved color-map files. (To save a color map explicitly
as a separate .cm file, choose Save As... in the File menu of the ColorMap
Editor.)

The imported file will be a group containing the color map as the first field and the
opacity map as the second field. (Alternatively, you can import just one of these
maps by specifying the variable parameter to Import as “colormap” or “opacity”
respectively.)

The color map is a field with a 1-dimensional “positions” component (the data
values) and a 3-dimensional “data” component (the colors). Similarly the opacity
map is a field with a 1-dimensional “positions” component (the data values) and a
1-dimensional “data” component (the opacities).

You can pass the imported color and opacity maps to (1) the color and opacity
tabs of the Color module or (2) the color-map and opacity parameters of the
Colormap tool.

When a .cm file is imported, the result is not only information describing the color
and opacity maps themselves, but also information specifically intended for the
Colormap Editor regarding control points. Users are not expected to create their
own .cm files (other than by writing them using the Save As command in the
Colormap Editor), as the content of this file is not documented. However users can
import any field which has the appropriate color or opacity map structure and use it
as input to either the Color or the Colormap tools. For more information on the
structure of color and opacity maps, see “Color” on page 75.

External filters. If the first character of the name parameter is “!” (e.g., “!ext2dx
mydata.ext mydata.dx”), the rest of the string following the exclamation point is
interpreted as a shell command to be executed. The command should be the
name of an external filter program with any required arguments. The filter program
can be any user-supplied program that reads data from other file formats or
generates data, but it must output “dx” or “general array” format as standard output.
The Import module waits for the program to execute, reads the output of the
program, and imports the objects with the same options as if reading directly from a
file.

Example Visual Programs
Nearly every example visual program uses the Import module. Most import Data
Explorer format files. Two example programs that import general array format files
are:

GeneralImport1.net

GeneralImport2.net

An example program that uses the external filter option is:

168 IBM Visualization Data Explorer: User’s Reference

 Import

 Modules

ImportExternalFilter.net

An example program that uses the extended form of the format parameter is:

MRI_2.net

 See Also
 Export, Partition, ReadImage, ImportSpreadsheet

 Chapter 2. Functional Modules 169

 ImportSpreadSheet

 ImportSpreadsheet

 Category
Import and Export

 Function
Import spreadsheet format data

 Syntax
field, labellist = ImportSpreadsheet(filename, delimiter,

columnname, format, categorize,
start, end, delta,

 headerlines, labelline);

 Inputs
Name Type Default Description

filename string (none) name of file to import

delimiter string " " one-character delimiter (what
separates the columns)

columnname string list (all) names of columns to import

format string 1-d import as 1-d or 2-d field

categorize string list "" list of columns to categorize
during import

start integer (first record) record (row) to begin importing

end integer (last record) record (row) to end importing

delta integer 1 increment of rows to import

headerlines integer 0 number of lines to skip before
start of data/column labels

labelline integer no default line number labels are on

 Outputs
Name Type Description

field field a field with each of the columns as a
component, with the name of the column
as the component name

labellist string list a list of the imported column names

 Functional Details
ImportSpreadsheet imports spreadsheet (i.e. tabular) ASCII data. Each column in
the file is imported as a separate component in the resulting output field. The name
of the component is taken from a name at the top of the column in the file, if
present. If no name is found, a default name of “column#” is used instead.

If any column entry is NULL or consists of just white space this entry is treated as
invalid data in Data Explorer. If it is a column of type

170 IBM Visualization Data Explorer: User’s Reference

 ImportSpreadSheet

 Modules

 � string
A place holder of “ ” is placed at that entry,

� float or int
A -999 is placed at that entry.

In addition, an “componentname missingvalues” component is created which
references those invalid entries. Also an “invalid positions” component is created
which is the union of all the “componentname missingvalues” components. For
more information on invalid positions, see “Invalid Positions and Invalid
Connections Components” on page 23 in IBM Visualization Data Explorer User’s
Guide.

filename is the file to import.

delimiter specifies a one-character delimiter which defines the columns. If
you do not specify delimiter, white space is assumed to delimit the
columns.

Note: The tab delimiter is specified as “\t”.

columnname is a list of the names of the columns you wish to import.

format must be either “1-d” or “2-d”. If you specify “1-d”, then positions of
the output field will simply be the indices (row numbers) from 0 to
number-of-rows. The field will have as many components as there
are imported columns, with each component named by the column
name. If you specify “2-d”, then the output field will be a c x r grid,
where r is the number of imported rows, and c is the number of
imported columns. It will have a single data component which
contains all the values in the imported rows and columns. If you
specify “2-d”, then the columns imported can not mix string data
with numerical data.

categorize specifies columns to be categorized, using the Categorize module.
If “allstring” is specified, all columns with a data type of “string” are
categorized. For additional information, see “Categorize” on
page 55.

headerlines specifies the number of lines to skip before the start of the
data/column labels, for skipping comments at the top of the file.
Note that this would typically be necessary only when the data
being imported is all strings, or if you have comments at the top of
the file that could be misinterpreted as labels or data.

labelline specifies the line number labels are on. Note that this would only be
necessary when the data being imported is all strings.

start, end, and delta
specify the records (rows) you wish to import.

Example Visual Programs
Categorical.net

Duplicates.net

Zipcodes.net

 Chapter 2. Functional Modules 171

 ImportSpreadSheet

 See Also
Categorize, Import

172 IBM Visualization Data Explorer: User’s Reference

 Include

 Modules

 Include

 Category
Import and Export

 Function
Includes data points in (or excludes them from) a data set.

 Syntax
output = Include(data, min, max, exclude, cull, pointwise);

 Inputs
Name Type Default Description

data field none the field from which to select
points

min scalar or
vector

min of data minimum value to include

max scalar or
vector

max of data maximum value to include

exclude flag 0 0: include selected range
1: exclude selected range

cull flag 1 0: culled points marked invalid
1: culled points removed

pointwise flag 0 if 1, ignore connections when
selecting points

 Outputs
Name Type Description

output field the field with selected points

 Functional Details
This module determines which points in a data set are to be treated as valid by
other modules. It does so by removing or invalidating data values that fall within
(or outside) a specified range, thereby including the remaining points in the set. If
there are connections (or faces or polylines) in the field, and pointwise=0, then
Include also removes all invalid connections (connections containing at least one
invalid position) and all unreferenced positions (positions not referred to by any
valid connection, face, or polyline element).

data is the data field that the module operates on.

min and max specify a range of data values whose function is determined by the
exclude flag (see below).

exclude specifies whether the values to be excluded from the data set lie
within or outside the range defined by min and max.

� 0: Removes or invalidates all elements or positions whose data
values lie outside the specified range.

 Chapter 2. Functional Modules 173

 Include

� 1: Removes or invalidates all elements or positions whose data
values lie within the specified range.

cull specifies whether the excluded (culled) points are to be invalidated
or actually removed from the data set.

� 0: Returns the field with invalid positions and invalid
connections, invalid faces, or invalid polylines components.
Since it is unnecessary to remove invalid positions, connections,
faces, or polylines, in order to have them treated as invalid by
other modules, this is usually the preferred setting.

If the module removes points from data with regular connections
(e.g., cubes or quads), the connections become irregular.

� 1: Returns the field with invalid positions and connections
removed.

pointwise if set to 1, the connections of data are removed before the points
are selected.

See “Invalid Positions and Invalid Connections Components” on page 23 in IBM
Visualization Data Explorer User’s Guide for further discussion of invalid data.

Note: If data is a vector field and min and max are:

� scalars, then the module uses min and max to exclude points whose
magnitudes fall inside (or outside) the limits.

� vectors matching the shape of the data field, then only those vector
values lying between the corresponding limits are retained.

For example, if the data are 3-D vectors, the values retained are those
for which minx ≤ datax ≤ maxx and miny ≤ datay ≤ maxy and minz ≤ dataz
≤ maxz are retained (assuming exclude = 0).

 Components
Modifies the “data,” “positions,” and “connections” components and any
components that depend on “positions” or “connections.” Adds an “invalid
positions,” “invalid connections,” or “invalid faces” component if cull is set to 0.
Removes the “connections” component if pointwise is set to 1. All other
components are propagated to the output.

 Example
In the following example, the gradient of the electron density has been mapped
onto an isosurface. The Include module removes all points whose data values are
greater than 1.5.

electrondensity = Import("/usr/lpp/dx/samples/data/watermolecule");

electrondensity = Partition(electrondensity);

gradientdensity = Gradient(electrondensity);

maggradient = Compute("mag($ð)", gradientdensity);

isosurface = Isosurface(electrondensity, ð.3);

mappediso = Map(isosurface, maggradient);

camera = AutoCamera(isosurface);

included = Include(mappediso, ð, 1.5);

Display(included, camera);

174 IBM Visualization Data Explorer: User’s Reference

 Include

 Modules

Including Data Points in a Data Field: Consider a field containing
position-dependent data and a “connections” component. If pointwise=0, after
invalidating positions with data values outside the specified range, Include
invalidates all connections that reference (include) an invalid position, and finally
invalidates all positions not referred to by any valid connection. That is, no
connection elements that include any invalid data values are retained—because the
result of interpolation within such a connection element is not defined. For
example, the following grid has valid data points (x), invalid points (i), and quad
connections.

x--------x--------i--------i--------x

| | | | |

| | | | |

| | | | |

x--------x--------i--------i--------x

| | | |

| | | |

| | | |

x--------x--------x--------x

| | | |

| | | |

| | | |

x--------x--------x--------x

The removal of invalid points leaves three invalid connection elements (the quads
marked with “o”) and two data positions that have no valid connection to any other
data point:

x--------x-------- x

| |

| | o

| |

x--------x-------- x

| | | |

| | o | o |

| | | |

x--------x--------x--------x

| | | |

| | | |

| | | |

x--------x--------x--------x

The field returned by Include is represented by the grid shown below.

x--------x

| |

| |

| |

x--------x

| |

| |

| |

x--------x--------x--------x

| | | |

| | | |

| | | |

x--------x--------x--------x

 Chapter 2. Functional Modules 175

 Include

Example Visual Programs
GeneralImport1.net

Thunder_cellcentered.net

SIMPLE/Include.net

 See Also
 Regrid

176 IBM Visualization Data Explorer: User’s Reference

 Input

 Modules

 Input

 Category
Special

 Function
Defines an input parameter for a macro.

 Syntax
Available only through the user interface.

 Outputs
Name Type Description

parameter object input value to macro

 Functional Details
Use the configuration dialog box of this module to specify the parameter name,
description, default value (if any), and tab position on the macro icon. This module
is used inside a macro: its output is the macro input required by other modules in
the macro. For additional information about the Input tool, see “Creating Macros”
on page 149 in IBM Visualization Data Explorer User’s Guide.

Example Macro and Program
MakeLineMacro.net is used by the visual program PlotLine2.net

 See Also
 DXLInput, Output, DXLOutput, DXLInputNamed

 Chapter 2. Functional Modules 177

 Inquire

 Inquire

 Category
Structuring

 Function
Returns information about an object.

 Syntax
output = Inquire(input, inquiry, value);

 Inputs
Name Type Default Description

input object none the subject of the inquiry

inquiry string "is null" a request for particular
information

value string none additional qualifiers

 Outputs
Name Type Description

output integer or object Examples include 1 and 0 (for yes/no
inquiries), arrays, fields, groups, and
vectors.

 Functional Details
input specifies the subject of the module’s inquiry.

inquiry specifies the query (see Notes on page 178). Some queries
require an additional parameter (see value).

value specifies an item of information needed for identifying the
appropriate subject of the query. For example, the “attribute”
inquiry requires the name of the attribute.

Notes:

1. Table 3 on page 179 through Table 6 on page 183 list the “inquiries” that can
be made, the type(s) of object appropriate to each, an explanatory version of
each, and the answer or type of answer returned.

2. Inquiries that start with “is” are true/false queries, returning 1 (one) for “yes” and
0 (zero) for “no.” Such queries can be reversed, however, by inserting “not”
after the initial “is”: An “is not” query also returns 1 (one) for “yes” and 0 (zero)
for “no.” For example, if the subject of the inquiry is a scalar field, “is scalar”
returns 1 (one) and “is not scalar” returns 0 (zero).

3. Any “is” query about a group whose members contain different types of objects
will return 0 (zero) unless all members have the characteristic specified in the
query. For example, if a group is composed of two fields, one scalar and one
vector, the answer to the question “is scalar” will be 0 (zero).

178 IBM Visualization Data Explorer: User’s Reference

 Inquire

 Modules

4. Any inquiry that returns a scalar integer value can be made to return a value
that is “1” higher or lower than that value. For example, “is array + 1” will
return 2 (instead of 1) or 1 (instead of 0).

5. Capitalization of an inquiry is optional and its words may be separated or run
together.

Table 3 (Page 1 of 2). Inquiries about objects

Inquiry Input operated
on

Question Answer

"is array" Any object Is the input an array? 1 or 0

"is byte" Any object Is the data component unsigned byte? 1 or 0

"is camera" Any object Is the input a camera object? 1 or 0

"is clipped" Any object Is the input a clipped object? 1 or 0

"is composite field" Any object Is the input a composite field? 1 or 0

"is constant array" Any object Is the input a constant array? 1 or 0

"is double" Any object Is the data component
double-precision floating point?

"is empty" Any object Is the input an empty field, an empty
group, or an array with no items?

1 or 0

"is field" Any object Is the input a field? 1 or 0

"is float" Any object Is the data component floating point? 1 or 0

"is generic array" Any object Is the input a generic array? 1 or 0

"is generic group" Any object Is the input a generic group? 1 or 0

"is group" Any object Is the input a group of any kind? 1 or 0

"is image" Any object Is the object an image? 1 or 0

"is int" Any object Is the data component integral? 1 or 0

"is integer" Any object Is the data component integral? 1 or 0

"is irregular array" Any object Is the input an irregular array? 1 or 0

"is light" Any object Is the input a light object? 1 or 0

"is line" Any object Is the connections component
1-dimensional (i.e., a line)?

1 or 0

"is matrix" Any object Is the data component a matrix? 1 or 0

"is mesh array" Any object Is the input a mesh array? 1 or 0

"is multigrid" Any object Is the input a multigrid? 1 or 0

"is null" Any object Is the input null? 1 or 0

"is object" Any object Is the input an object? 1 or 0

"is path array" Any object Is the input a path array? 1 or 0

"is private" Any object Is the input a private object? 1 or 0

"is product array" Any object Is the input a product array? 1 or 0

"is regular array" Any object Is the input a regular array? 1 or 0

"is scalar" Any object Is the data component scalar? 1 or 0

"is screen" Any object Is the input a screen object? 1 or 0

"is series" Any object Is the input a series? 1 or 0

 Chapter 2. Functional Modules 179

 Inquire

Table 3 (Page 2 of 2). Inquiries about objects

Inquiry Input operated
on

Question Answer

"is short" Any object Is the data component short integral? 1 or 0

"is string" Any object Is the input a string? 1 or 0

"is surface" Any object Are the connections 2-dimensional? 1 or 0

"is transform" Any object Is the input a transform object? 1 or 0

"is xform" Any object Is the input a generic array? 1 or 0

"is vector" Any object Is the data component vectorial? 1 or 0

"is volume" Any object Are the connections 3-dimensional? 1 or 0

"is 2vector" Any object Is the data component 2-vectorial? 1 or 0

"is 3vector" Any object Is the data component 3-vectorial? 1 or 0

"is 1D connections" Any object Does the object have 1-dimensional
connections?

1 or 0

"is 2D connections" Any object Does the object have 2-dimensional
connections?

1 or 0

"is 3D connections" Any object Does the object have 3-dimensional
connections?

1 or 0

"is 1D positions" Any object Does the object have 1-dimensional
positions?

1 or 0

"is 2D positions" Any object Does the object have 2-dimensional
positions?

1 or 0

"is 3D positions" Any object Does the object have 3-dimensional
positions?

1 or 0

"is 4D positions" Any object Does the object have 4-dimensional
positions?

1 or 0

"is 1D grid connections" Any object Does the object have 1-dimensional
regular connections?

1 or 0

"is 2D grid connections" Any object Does the object have 2-dimensional
regular connections?

1 or 0

"is 3D grid connections" Any object Does the object have 3-dimensional
regular connections?

1 or 0

"is 1D grid positions" Any object Does the object have 1-dimensional
regular positions?

1 or 0

"is 2D grid positions" Any object Does the object have 2-dimensional
regular positions?

1 or 0

"is 3D grid positions" Any object Does the object have 3-dimensional
regular positions?

1 or 0

"is 4D grid positions" Any object Does the object have 4-dimensional
regular positions?

1 or 0

"primitives" Any object How many of each type of primitive
does the object contain?

string list

"object tag" Any object Returns the unique object identifying
tag

integer

180 IBM Visualization Data Explorer: User’s Reference

 Inquire

 Modules

Table 4 (Page 1 of 2). Inquiries about particular types of objects

Inquiry Input operated
on

Question Answer

"category" Array or list What category does the input belong
to?

string (see 1 on
page 182)

"connection counts" array or list How many connections are there? integer

"connection type" Field What is the element type? string

"count" Array or list How many items does the input
contain?

integer

"data counts" Array or list How many data items are there? integer

"deltas" Array or list What are the deltas in each
dimension?

vector list

"grid counts" Array or list What are the counts in each
dimension?

integer

"is empty array" Array or list Is the input an array with no items? 1 or 0

"items" Array or list How many items does the input
contain?

integer

"origin" Array or list What is the origin of the input? vector

"position counts" Array or list How many positions are there? integer

"rank" Array or list What is the rank of the input? integer

"shape" Array or list What is the shape of the input? vector

"type" Array or list What is the type of the input? string (see 2 on
page 182)

"camera angle" Camera What is the camera angle? scalar

"camera aspect" Camera What is the aspect ratio of the input
camera?

scalar

"camera background" Camera What is the background color of the
input camera?

3-vector

"camera fieldofview" Camera What is the field of view of the input
camera?

scalar

"camera from" Camera What is the “from” point of the input
camera?

vector

"camera matrix" Camera What is the matrix of the input
camera?

matrix

"camera perspective" Camera What is the value of the perspective
option?

0 or 1

"camera resolution" Camera What is the resolution of the input
camera?

integer

"camera to" Camera What is the “to” point of the input
camera?

vector

"camera transform" Camera What is the matrix of the input
camera?

matrix

"camera up" Camera What is the up direction of the input
camera?

vector

"camera width" Camera What is the width of the input camera? scalar

"is camera orthographic" Camera Is the input camera orthographic? 1 or 0

 Chapter 2. Functional Modules 181

 Inquire

Table 4 (Page 2 of 2). Inquiries about particular types of objects

Inquiry Input operated
on

Question Answer

"is camera perspective" Camera Is the input camera perspective? 1 or 0

"clipped object" Clipped What is the clipped object? object

"clipping object" Clipped What is the clipping object? object

"component count" Field How many components does the field
contain?

integer

"component names" Field What are the names of the field
components?

string list

"connection gridcounts" Field What are the connection counts in
each dimension?

integer vector

"is empty field" Field Is the input an empty field (i.e., with no
components, “positions” component, or
position items)?

1 or 0

"is regular" Field Does the field have regular positions
and connections?

1 or 0

"is regular connections" Field Does the field have regular
connections?

1 or 0

"is regular positions" Field Does the field have regular positions? 1 or 0

"is empty group " Group Is the input a group with no members? 1 or 0

"member count" Group How many members belong to the
group?

integer

"member names" Group What are the names of the group
members?

string list

"position gridcounts" Field What are the position counts in each
dimension?

integer vector

"product terms" Product Array What are the individual product terms? Group of Arrays

"mesh terms" Mesh Array What are the individual mesh terms? Group of Arrays

"screen depth" Screen What is the screen depth? integer

"screen object" Screen What is the screen object? object

"screen position" Screen What is the screen position? integer

"member positions" Series What are the series positions? scalar list

"series positions" Series What are the series positions? scalar list

"transform matrix" Transform What is the transform matrix? matrix

"transform object" Transform What is the object to be transformed? object

"valid count" Any object How many valid data items are there? integer

"invalid count" Any object How many invalid data items are
there?

integer

Notes:

 1. Possible categories: “real,” “complex.”

2. Possible types: “signed byte,” “unsigned byte,” “short,” “unsigned short,” “integer,” “unsigned integer,” “float,”
“double,” and “string.”

182 IBM Visualization Data Explorer: User’s Reference

 Inquire

 Modules

Table 5. Inquiries that take a value parameter

Inquiry Input
operated
on

Value Question Answer

"attribute" Any
object

attribute name What is the value of the specified
attribute?

string

"counts" Field component name How many items does the
specified component contain?

integer

"grid counts" Field component name What are the counts in each
dimension of the specified
component?

integer
vector

"has attribute" Any
object

attribute name Does the object have the specified
attribute?

1 or 0

"has component" Field component name Is the specified component
present?

1 or 0

"has member" Group member name Is the specified member present? 1 or 0

"is connection" Field element type Are the connections of the
specified type?

1 or 0

"is data
dependent"

Any
object

component name Is the data dependent on the
specified component?

0 or 1

"is regular" Field component name Is the specified component
regular?

1 or 0

"items" Field component name How many items in the specified
component?

integer

"member
attribute"

Group attribute name What is the value of the specified
attribute?

string,
list

"member
attributes"

Group attribute name What is the value of the specified
attribute?

string,
list

"string match" String character string Does the output match the
specified string?

1 or 0

Table 6. Miscellaneous Inquiries

Inquiry Question Answer

"processors" How many processors is Data Explorer Using? integer

Example Visual Programs
MultipleDataSets.net

PlotTwoLines.net

UsingAttributes.net

UsingTextandTextGlyphs.net

WindVorticity.net

 Chapter 2. Functional Modules 183

 Integer

 Integer

 Category
Interactor

 Function
Generates an integer within a specified range of values.

 Syntax
Available only through the user interface.

 Inputs
Name Type Default Description

data object no default object from which interactor
attributes can be derived

refresh flag 0 reset the interactor

min integer minimum data
value

minimum output integer

max integer maximum
data value

maximum output integer

delta scalar input
dependent

increment between successive
integer outputs

method string input
dependent

defines interpretation of delta
input

label string "Integer" global name applied to interactor
stand-ins

 Outputs
Name Type Description

output integer interactor output

 Functional Details
This interactor provides incremental control of various functions in a visual program
(e.g., the number of contour lines currently displayed on an isosurface in the Image
window). The integer range over which the module acts is governed by its
attributes (e.g., minimum, maximum, and delta), which in turn are either (1)
specified by the parameter values in its Set Attributes... dialog box or (2)
determined from input to the module (e.g, a data field). In the second case, the
interactor is said to be “data driven.”

Note: The interactor is invoked by double-clicking on its icon in the VPE window.
Its configuration dialog box is accessed from the Edit pull-down menu in the same
window.

data is the object (usually a data field) from which the interactor can
derive any or all of the minimum, maximum, and delta attributes
when the corresponding input tabs are up.

184 IBM Visualization Data Explorer: User’s Reference

 Integer

 Modules

refresh resets the interactor so that the output is computed from the current
input. If refresh = 0 (the default), the output is recomputed only if
the current output does not lie within the range of the current data.
The default for the output of the interactor is the midpoint of min
and max.

min and max specify the minimum and maximum values of the interactor’s integer
output. If set, these values override those implied by data.

If neither min nor data is specified, the interactor uses the minimum
set in the Set Attributes... dialog box.

If neither max nor data is specified, the interactor uses the maximum
set in the Set Attributes... dialog box.

delta specifies a scalar value as a factor for calculating the increment
between successive outputs over the specified range. The actual
value depends on the interpretation specified by method (see
below).

method specifies the interpretation of delta:

� “rounded”: the increment (max – min) × delta is rounded to a
“nice” number. The spacing between successive values will
approximate the interval specified by delta. (For example, the
default value of 0.01 specifies an interval of 1/100 of the
specified range.)

� “relative”: the interpretation is the same as for “rounded,” but the
increment is not rounded.

� “absolute”: delta is the absolute value of the interval. (If delta
has not been specified, its default is 1.)

The default value for method depends on other input. The
default is:

– “rounded” if data is specified or if both min and max are
specified.

– “absolute” in all other cases.

label is the global label of all instances of the corresponding interactor
stand-in. An interactor instance’s local label (set from the Control
Panel) overrides a global label. By default, the global label is set by
the user interface.

Example Visual Programs
Many example visual programs use Integer interactors. An example program that
uses a data-driven integer interactor is WindVorticity.net

 See Also
 IntegerList, Scalar, ScalarList, Vector, VectorList

 Chapter 2. Functional Modules 185

 IntegerList

 IntegerList

 Category
Interactor

 Function
Generates a list of integers within a specified range of values.

 Syntax
Available only through the user interface.

 Inputs
Name Type Default Description

data object no default object from which interactor
attributes can be derived

refresh flag 0 reset the interactor

min integer minimum data
value

minimum output integer

max integer maximum
data value

maximum output integer

delta scalar input
dependent

increment between successive
integer outputs

method string input
dependent

defines interpretation of delta
input

nitems integer 11 number of items in the initial list

label string "IntegerList" global name applied to interactor
stand-ins

 Outputs
Name Type Description

output integer list interactor output

 Functional Details
This interactor provides incremental control of various functions in a visual program
(e.g., the number of contour lines currently displayed on an isosurface in the Image
window). But it creates a list of integers, rather than a single integer, as Integer
does.

The integer range over which the module acts is governed by its attributes (e.g.,
minimum, maximum, and delta), which in turn are either (1) specified by the
parameter values in its configuration dialog box or (2) determined from input to the
module (usually a data field). In the second case, the interactor is said to be “data
driven.”

If an interactor is not data driven, then the attributes (e.g., minimum, maximum,
delta, etc.) are taken from the interactor’s Set Attributes... dialog box (which is
accessed from the Edit pull-down menu in the Control Panel).

186 IBM Visualization Data Explorer: User’s Reference

 IntegerList

 Modules

Note: The interactor is invoked by double-clicking on its icon in the VPE window.
Its configuration dialog box is accessed from the Edit pull-down menu in the same
window.

data is the object (usually a data field) from which the interactor can
derive any or all of the minimum, maximum, and delta attributes
when their corresponding input tabs are up.

refresh resets the interactor so that the output is computed from the current
input. If refresh = 0 (the default), the output is recomputed only if
the current output does not lie within the range of the current data.

min and max specify the minimum and maximum values of the interactor’s integer
output. If set, these values override those implied by data.

If neither min nor data is specified, the interactor uses the minimum
set in the Set Attributes... dialog box.

If neither max nor data is specified, the interactor uses the maximum
set in the Set Attributes... dialog box.

delta specifies a scalar value as a factor for calculating the increment
between successive outputs over the specified range. The actual
value depends on the interpretation specified by method (see
below).

method specifies the interpretation of delta:

� “rounded”: the increment (max – min) × delta is rounded to a
“nice” number. The spacing between successive values will
approximate the interval specified by delta. (For example, the
default value of 0.01 specifies an interval of 1/100 of the
specified range.)

� “relative”: the interpretation is the same as for “rounded,” but the
increment is not rounded.

� “absolute”: delta is the absolute value of the interval. (If delta
has not been specified, its default is 1.)

The default value for method depends on other input. The
default is:

– “rounded” if data is specified or if both min and max are
specified.

– “absolute” in all other cases.

nitems specifies the number of items in a newly created list. These are
evenly spaced between the minimum and maximum values (see
above). For example, if this parameter is given a value of 5, and
the range is 0–100, the output list will be {0, 25, 50, 75, 100}.

Notes:

1. If nitems changes, a new list is computed.

2. This parameter takes affect only if the minimum and maximum
are set with the min and max parameters or with data parameter.

label is the global label of all instances of the corresponding interactor
stand-in. An interactor instance’s local label (set from the Control
Panel) overrides a global label. By default, the global label is set by
the user interface.

 Chapter 2. Functional Modules 187

 IntegerList

 See Also
 Integer, Scalar, ScalarList, Vector, VectorList

188 IBM Visualization Data Explorer: User’s Reference

 Isolate

 Modules

 Isolate

 Category
Realization

 Function
“Shrinks” the connection elements of a specified field, creating new positions.

 Syntax
output = Isolate(field, scale);

 Inputs
Name Type Default Description

field field none field whose connections are to
be isolated

scale scalar 0.5 shrinkage factor

 Outputs
Name Type Description

output field field of isolated connections

 Functional Details
This module moves all positions closer to the center of the connection elements to
which they belong, by an amount specified by a scaling parameter (0 ≤ scale ≤ 1).
Each original position yields as many new positions as there are connection
elements that include it. This “shrinkage” makes it possible to view the connection
elements of a field (triangles, quads, cubes, or tetrahedra) individually.

Using Isolate followed by ShowBoundary on volumetric data can provide a way to
see values throughout a volume.

 Components
Creates new positions and connections components. Items belonging to
position-dependent components will be duplicated as necessary for the new
positions.

Example Visual Program
Isolate.net

 See Also
ShowConnections

 Chapter 2. Functional Modules 189

 Isosurface

 Isosurface

 Category
Realization

 Function
Computes isosurfaces and contours.

 Syntax
surface = Isosurface(data, value, number, gradient, flag, direction);

 Inputs
Name Type Default Description

data scalar field none field from which one or more
surfaces are to be derived.

value scalar or
scalar list

data mean isosurface value or values

number integer no default number of isosurfaces or
contours to be computed

gradient vector field no default gradient field

flag flag 1 0: normals not computed
1: normals computed

direction integer −1 orientation of normals

 Outputs
Name Type Description

surface field or group isosurface

 Functional Details
This module computes any of the following:

� points (for an input field consisting of lines)
� lines (for a surface input field)
� surfaces (for a volumetric input field).

All positions in the output field are isovalues (i.e., they match a specified value or
values).

The module also adds a default color to the output (gray-blue for isosurfaces and
yellow for contour lines and points) if the input object is uncolored. If the object is
colored, its colors are interpolated in the output object.

A “data” component with the same value as the input value is added to the output
field.

data is the data object for which an isosurface or contour is to be
created.

190 IBM Visualization Data Explorer: User’s Reference

 Isosurface

 Modules

value is the isovalue or isovalues to be used for computing the
isosurface(s) or contour(s).

If this parameter is not specified, the module bases it calculations
on the value specified by number (see below). If neither parameter
is specified, the module uses the arithmetic mean of the data input
as a default.

number is ignored if value has been specified. If that parameter is not
specified, the module uses the value of number to compute a set of
isosurfaces or contours with the following isovalues:

min + delta, min + (2\delta),..., min − delta

where delta = (max – min)/(number + 1), and “max” and “min” are
the maximum and minimum data values of the input field.

gradient is the gradient field used to compute normals for shading (see
“Gradient” on page 155).

If this parameter is not specified, the module adds normals by
computing the gradient internally (flag can nullify this behavior; see
below).

Note: If only one isosurface is to be computed, it is probably more
efficient to have module compute the gradient internally. If many
are to be generated, it is probably more efficient to compute the
gradient of the entire field once, so that the system can use it for
every isosurface.

flag specifies whether normals are to be computed for shading. A
setting of 0 (zero) prevents the computation of normals. The default
is 1 (one)

direction specifies whether the normals should point against (0, the default)
or with (1) the gradient.

Notes:

1. This module adds an attribute called “Isosurface value,” which has as its value
the isovalue(s) used. To extract this attribute (e.g., for use in a caption for an
image), use the Attribute module.

2. For contour lines, this module adds a “fuzz” attribute so that the line will be
rendered slightly in front of a coincident surface (see Display).

3. A surface or contour is considered to be undefined if every point in the input
volume or surface, respectively, is equal to value. In such cases, the module
output is an empty field.

4. Isosurface does not accept connection-dependent data.
5. With disjoint data fields, there may be no data crossings (i.e., points along a

connection element where the interpolated data value equals the isovalue),
even though the isovalue itself falls in the range of the actual data.

 Components
Creates new “positions” and “connections” components. For surfaces output, the
default is to create a “normals” component. Any component dependent on
“positions” is interpolated and placed in the output object.

 Chapter 2. Functional Modules 191

 Isosurface

Example Visual Programs
Many example visual programs use the Isosurface module, including:

AlternateVisualizations.net

ContoursAndCaption.net

InvalidData.net

MappedIso.net

Sealevel.net

UsingIsosurface.net

SIMPLE/Isosurface.net

 See Also
 Band, Color, Gradient, Map, SimplifySurface

192 IBM Visualization Data Explorer: User’s Reference

 KeyIn

 Modules

 KeyIn
“Debugging” on page 4

 Function
Waits for a line of input from the terminal.

 Syntax
KeyIn(prompt);

 Inputs
Name Type Default Description

prompt string "Type
<ENTER> to
continue"

string printed

 Functional Details
This module delays execution of a script until it receives a line of input (as signaled
by a return character) from the workstation. If prompt is specified, it will be printed.
Otherwise the default string is printed.

Note: KeyIn can be used only in script mode, and the Data Explorer executive
must also be running on the local machine.

Script Language Example
In this example, the first image is displayed. The second image is computed, but
Data Explorer does not display it until you type the return character.

electrondensity = Import("/usr/lpp/dx/samples/data/watermolecule");

electrondensity = Partition(electrondensity);

isosurface = Isosurface(electrondensity, ð.3);

camera = AutoCamera(isosurface);

Display(isosurface, camera);

isosurface = Isosurface(electrondensity, ð.5);

camera = AutoCamera(isosurface);

KeyIn("press enter to continue");

Display(isosurface, camera);

 Chapter 2. Functional Modules 193

 Legend

 Legend

 Category
Annotation

 Function
Creates a legend

 Syntax
legend = Legend(stringlist,colorlist, position, shape,

horizontal, label, colors, annotation, labelscale, font);

 Inputs
Name Type Default Description

stringlist string list none list of strings for legend

colorlist field, vector
list, or string
list

none list of colors for legend

position vector [0.95, 0.95] the position of the color bar (in
viewport-relative coordinates)

shape vector [300 25] length and width of the color bar
(in pixels)

horizontal flag 0 0: vertical orientation
1: horizontal orientation

label string no defaults label for color bar

colors vector list or
string list

appropriate colors for annotation

annotation string list "all" annotation objects to be colored

labelscale scalar 1.0 scale factor for labels

font string standard font for labels

 Outputs
Name Type Description

legend color field the legend

 Functional Details
This module creates a legend associating a set of strings with a set of colors. The
legend generated by this module can be collected with the rest of the objects in a
scene (by using a Collect module) and incorporated into an image.

stringlist is a list of strings for the legend

colorlist is a colormap, a list of rgb vectors, or a list of color name strings
(see “Color” on page 75 for a discussion of valid color name
strings). If colorlist is a list of rgb vectors or a list of color name
strings, then the length of colorlist must be the same as the
length of stringlist. If colorlist is a colormap (see “Color” on

194 IBM Visualization Data Explorer: User’s Reference

 Legend

 Modules

page 75 for a description of a color map), then the colors are taken
to be the values in colorlist corresponding to the integers 0, ...
n-1 where n is the number of items in stringlist. Thus, for
example, AutoColor or Color can be applied to a categorized string
data set (see “Categorize” on page 55), and the colormap used can
be directly passed to Legend to associate the appropriate colors
with the categorized strings.

position is a 2-dimensional vector (or a 3-dimensional vector whose
z-component is ignored) indicating the position of the legend in the
final image. In viewport-relative coordinates, [0 0] places the legend
at the lower left, and [1 1] at the upper right. These same
coordinates determine the reference point that is used to position
the legend relative to its placement in the image (e.g., for position
= [0 0], the lower left corner of the legend is placed in the lower left
corner of the image).

shape is a 2-vector that specifies the length and width of the legend , in
pixels. For both horizontal and vertical orientations, the first
element of the vector is the length and the second is the width.

horizontal determines whether the orientation of the legend is vertical (0) or
horizontal (1).

label specifies a user-supplied label for the legend.

colors and annotation
set the colors of certain components of the legend.

colors can be a single color (RGB vector or color-name string) or a
list. The color-name string must be one of the defined color names
(see “Color” on page 75).

annotation can be a single string or a list of strings, chosen from
the following: “all,” “frame,” “labels,” and “ticks.”

If annotation is not specified or is “all”—and if colors is a single
string—then colors is used for all color-bar annotation. Otherwise
the number of colors must match the number of annotation strings
exactly. The default frame color is “clear.”

labelscale determines the size of the axes and tick-mark labels. For example,
labelscale = 2.0 will display the labels at double their default size.

font specifies the font used for axes and tick-mark labels. You can
specify any of the defined fonts supplied with Data Explorer. These
include a variable-width font (“variable”, the default for axes labels)
and a fixed-width font (“fixed”, the default for tick-marks labels).

area gothicit_t pitman roman_ext

cyril_d greek_d roman_d script_d

fixed greek_s roman_dser script_s

gothiceng_t italic_d roman_s variable

gothicger_t italic_t roman_tser

For more information, see Appendix E, “Data Explorer Fonts” on
page 307 in IBM Visualization Data Explorer User’s Guide.

 Chapter 2. Functional Modules 195

 Legend

Example Visual Programs
HomeOwn.net

Legend.net

SalesOnStates.net

 See Also
ScaleScreen, Color, ColorBar, Categorize

196 IBM Visualization Data Explorer: User’s Reference

 Light

 Modules

 Light

 Category
Rendering

 Function
Creates a distant light source.

 Syntax
light = Light(where, color, camera);

 Inputs
Name Type Default Description

where vector or
camera

[0 0 1] position or direction of light

color vector or
string

[1 1 1] color and intensity of light

camera flag 0 0: fixed direction
1: direction relative to camera

 Outputs
Name Type Description

light light a distant light

 Functional Details
where specifies the direction to the light source. If this parameter is

specified as a camera rather than as a vector, the module positions
the light source behind the camera and to its left (this is also the
default light supplied by Data Explorer).

color specifies the color and intensity of the light either as an RGB vector
or as a color-name string. The color name must be one of the
defined color-name strings (see “Color” on page 75).

camera specifies that where is to be interpreted relative to the camera
coordinate system rather than the world coordinate system.

If where is a camera, then the specification camera = 0 is an error.

Use the Collect module to incorporate the output light in the scene given to the
Render, Display, or Image.

If no light is present in the object passed to the Render, Display, or Image tool, a
distant light of color [1 1 1] (behind and 45 degrees to the left of the viewer) is
automatically incorporated in the scene. A small amount of ambient light is also
used. Data Explorer removes these default lights if any light has been specified.
The effect of the system’s default lights by combining an ambient light (generated
by using the default settings of AmbientLight) with the distant light generated by the
Light module when a camera is specified for the where parameter.

 Chapter 2. Functional Modules 197

 Light

Lights have no effect on volume-rendered objects.

Example Visual Programs
ThunderGlyphSheet.net

UsingLight.net

 See Also
 AmbientLight, Collect, Color, Convert

198 IBM Visualization Data Explorer: User’s Reference

 List

 Modules

 List

 Category
Structuring

 Function
Creates a list.

 Syntax
list = List(object1, object2,...]);

 Inputs
Name Type Default Description

object1 value, value
list, or string
list

no default list item

object2, more list items to concatenate

 Outputs
Name Type Description

list value list or string
list

the list of objects

 Functional Details
This module creates a list from specified objects, which can be single values,
strings or lists themselves. The objects specified (object1, object2, ...) must all
be the same type or be convertible to the same type. The output list is a list of
the concatenated items.

To select items from the list, use the Select module.

A maximum of 21 objects can be concatenated with single call to the List module.
In the user interface, the default number of enabled string tabs is two. (Tabs can
be added to the module icon and removed with the appropriate ...Input Tab
options in the Edit pull-down menu of the VPE.)

Example Visual Programs
AnnotationGlyphs.net

ContoursAndCaption.net

MappedIso.net

PlotTwoLines.net

UsingAttributes.net

 Chapter 2. Functional Modules 199

 List

 See Also
 Select, Enumerate

200 IBM Visualization Data Explorer: User’s Reference

 Lookup

 Modules

 Lookup

 Category
Transformation

 Function

 Syntax
output = Lookup(input, table, data, lookup, value, destination, ignore);

 Inputs
Name Type Default Description

input field, string
list, value,
value list

(none) object to lookup

table field, string,
value list

(dataname
lookup)

lookup table

data string “data” component of input to lookup

lookup string “positions” component of table in which to
look

value string “data” component in table containing
lookup results

destination string “lookedup” component of input in which to
put result

ignore string list (no default) Properties to ignore in string
lookup

 Outputs
Name Type Description

output field or array field or array with looked-up values

 Functional Details
input field containing the component to use as lookup

table field containing the lookup table components

data component in input to use for looking up

lookup component in table that the data component is to match

value component in table to use as the looked up result

destination component of input in which to put the looked up results

ignore properties to ignore in string lookup. Can be one of “case”, “space”,
“lspace”, “rspace”, “lrspace”, “punctuation”. “case” means to ignore
the case of the characters, “space” means to ignore all white space
(spaces, tabs, ...), “lspace” means to ignore white space on the left
side of the string, “rspace” means to ignore white space on the right
side of the string, “lrspace” means to ignore white space on both

 Chapter 2. Functional Modules 201

 Lookup

the left and right sides (but not internal white space), and
“punctuation” means to ignore all punctuation characters (anything
other than alphabetic and numeric characters and white space).
ignore can be a list of strings; for example, a commonly used
combination is {“space”, “case”, “punctuation”}.

Lookup uses one component to find another by “looking up” the corresponding
value in a lookup table. Lookup serves to convert a categorized component back
to its original form, or more generally to provide arbitrary associations of unrelated
object types. The lookup can occur entirely within the input field when it contains all
components necessary to do the lookup, or alternatively the lookup table can be
provided as a separate field in table.

If table is an array, Lookup treats it as if it has an implicit “positions” component
with values from 0 to n-1, where n is the number of items in the array. Thus if the
data component is integer, and lookup is an array of strings, data can be used to
lookup a matching value in the implicit positions component and return the string.
Alternatively, if data were also a string array, Lookup could lookup a matching
value in the table array and return the corresponding implicit position.

Note: The lookup is done using a binary search of the lookup component. If this
component is not already sorted, it will be internally sorted in order to perform the
lookup. Connections are not used by this module. Since Data Explorer does not
support string positions, if lookup is done using a string data type the table input
must have a separate float positions component. If the lookup component has
duplicate values, the value corresponding to the first one found will be used.

 Components
Adds a new component as specified by the destination parameter containing the
looked-up values.

Example Visual Programs
Duplicates.net

 See Also
Categorize, Map, CategoryStatistics

202 IBM Visualization Data Explorer: User’s Reference

 ManageColormapEditor

 Modules

 ManageColormapEditor

 Category
Interface Control

 Function
Allows colormap editors to be opened and closed from within a visual program.

 Syntax
Available only in the user interface.

 Inputs
Name Type Default Description

name string no default name of the colormap editor(s)
to be opened or closed

open flag, flag list,
or string list

0 0: close the colormap editor(s)
1: open the colormap editor(s)

how string or string
list

"title" open or close the colormap
editor(s) by title or label

 Functional Details
name specifies the name(s) of the colormap editor(s) to be opened.

open determines whether the specified editor(s) will be opened (1) or
closed (0). The effect of this parameter depends on the type of
argument supplied:

� If the argument is a single integer, all the specified Colormap
editors will either be opened or they will all be closed.

� If the argument is an integer list, it must have the same number
of items as the list of strings given in name, and the flags are
associated one-to-one with the named editors.

� If the argument is a string list, the Colormap editors listed in
open will be opened, and those listed in name but not in open will
be closed.

how if specified, determines how the name parameter is to be interpreted:

"title": the name specified is the title of the colormap editor
(accessible through the Change Colormap Name option in the
Option pull-down menu of the Colormap Editor) or the
title parameter of the Colormap tool.

"label": the name specified is the label of the colormap editor
(accessible the Notation field of the Colormap Editor
configuration dialog box).

 Chapter 2. Functional Modules 203

 ManageColormapEditor

Example Visual Program
InterfaceControl1.net

 See Also
 Execute, ManageControlPanel, ManageImageWindow, ManageSequencer

204 IBM Visualization Data Explorer: User’s Reference

 ManageControlPanel

 Modules

 ManageControlPanel

 Category
Interface Control

 Function
Allows control panels to be opened and closed from within a visual program.

 Syntax
Available only in the user interface.

 Inputs
Name Type Default Description

name string or string
list

no default name of the control panel(s) to
be opened or closed

open flag, flag list,
or string list

0 0: close the control panels(s)
1: open the control panels(s)

 Functional Details
name specifies the control panel(s) to be opened.

open determines whether the specified control panel(s) will be opened (1)
or closed (0). The effect of this parameter depends on the type of
argument supplied:

� If the argument is a single integer, all the specified panels will
be opened or they will all be closed.

� If the argument is an integer list, it must have the same number
of items as the list of strings given in name, and the flags are
associated one-to-one with the named panels.

� If the argument is a string list, the panels listed in open will be
opened, and those listed in name but not in open will be closed.

Example Visual Program
InterfaceControl1.net

 See Also
 Execute, ManageColormapEditor, ManageImageWindow, ManageSequencer

 Chapter 2. Functional Modules 205

 ManageImageWindow

 ManageImageWindow

 Category
Interface Control

 Function
Allows Image or Display windows to be opened and closed from within a visual
program.

 Syntax
Available only in the user interface.

 Inputs
Name Type Default Description

name string or string
list

no default name of the windows to be
opened or closed

open flag, flag list,
or string list

0 0: close the windows
1: open the windows

how string "title" open or close the Image or
Display windows by title, label,
or window

 Functional Details
name specifies the windows to be opened.

open determines whether the specified windows will be opened (1) or
closed (0). The effect of this parameter depends on the type of
argument supplied:

� If the argument is a single integer, all the specified windows will
be opened or they will all be closed.

� If the argument is an integer list, it must have the same number
of items as the list of strings given in name, and the flags are
associated one-to-one with the named windows.

� If the argument is a string list, the windows listed in open will be
opened, and those listed in name but not in open will be closed.

how if specified, determines how the name parameter is to be interpreted:

"title" the name specified is the title of the window (accessible
through the Image Name option in the Options pull-down
menu of the Image window, the title parameter of the
Image tool or the where parameter of the Display module).

"label" the name specified is the label of the window (accessible
through the Notation field of the configuration dialog box of
the Image or Display module).

"window"

the window identifier. If using SuperviseWindow and
SuperviseState, then name should be the where output of
SuperviseWindow.

206 IBM Visualization Data Explorer: User’s Reference

 ManageImageWindow

 Modules

Note: If you use this module to close a window, you must also turn off rendering
to that window, using the Route module. Otherwise the window will open and then
immediately close.

Example Visual Program
InterfaceControl2.net

 See Also
 Execute, ManageColormapEditor, ManageControlPanel, ManageSequencer,
Route,SuperviseWindow , SuperviseState

 Chapter 2. Functional Modules 207

 ManageSequencer

 ManageSequencer

 Category
Interface Control

 Function
Determines whether the Sequence control panel is displayed or not.

 Syntax
Available only in the user interface.

 Inputs
Name Type Default Description

open flag 1 0: close the sequencer
1: open the sequencer

 Functional Details
This module allows a sequencer control panel to be opened or closed from within a
visual program (without use of the Sequencer option in an Execute pull-down
menu).

 See Also
 Execute, ManageColormapEditor, ManageControlPanel, ManageImageWindow

208 IBM Visualization Data Explorer: User’s Reference

 Map

 Modules

 Map

 Category
Transformation

 Function
Applies a map to a field or value list.

 Syntax
output = Map(input, map, source, destination);

 Inputs
Name Type Default Description

input field, value, or
value list

none field to be mapped

map scalar, vector,
or field

identity map to be used

source string "positions" component used as index into
map

destination string "data" component in which to place the
interpolated data.

 Outputs
Name Type Description

output field, value, or
value list

mapped input field

 Functional Details
Map is a general purpose module which maps from one field to another.

input is the field or value list to which map is applied.

map is the map to be applied to the input object. Unless this parameter
specifies a single value, it should contain both a “positions” and a
“data” component.

Because the module performs interpolation, the map it applies to
the input must also contain either (1) a “connections” component or
(2) “faces,” “loops,” and “edges” (see “Faces, Loops, and Edges
Components” on page 24 in IBM Visualization Data Explorer User’s
Guide). The “data” component may be dependent on “positions,”
“connections,” or “faces.” (If the field contains faces, loops, and
edges, the data must be dependent on faces.)

source specifies the component of input that is to be used for indexing into
the “positions” component of map. The value of the corresponding
“data” in map is determined by interpolation between the “positions”
in map, using the interpolation elements of map (either “connections”
or “faces”, “loops”, and “edges”). source is ignored if input is a
value list.

 Chapter 2. Functional Modules 209

 Map

destination specifies the output component in which interpolated values should
be placed. If input is a value list, then the interpolated values
simply replace the values in input.

The Map module steps through the source component of input. For each item in
that component, the module looks up that value in the “positions” component of map
and finds the corresponding value in the “data” component of map, interpolating if
necessary. The resulting value is placed in the destination component of output
(see Figure 3).

Figure 3. Mapping from one field to another. This figure shows an input field and a map
field, both with two-dimensional positions and triangle connections. The figure shows how a
data value is found for the position (a,b) in the input field by interpolating in the map field
when the parameters to the Map module are input= Input Field, map= Map Field, and
source and destination default to “positions” and “data” respectively.

As with all maps in Data Explorer, the map field must have “positions”, “data”, and
“connections”. Since the source component is “positions”, the “positions” component of input
is used to index into the “positions” component of map. Thus we lookup the position (a,b) in
the map field. This leads us to the triangle connecting positions 0, 1, and 2 in the map field.
The data values corresponding to positions 0, 1, and 2 are interpolated to yield the result
1.3, which is then placed in the “data” component of the output of Map (since destination is
“data”).

Map Field

"positions" "data" "connections"

x1, y1
x2, y2
x3, y3
...

1.0
1.0
2.0
...

Data Field

"positions" "data" "connections"

...
a, b
...

... ...

(New) Data Field

"positions" "data" "connections"

...
a, b
...

...
1.3
...

...

0 1 2
...

Input Field

data are dependent on positions

position (a,b)

Map Field

(x1, y1) 1.0

(x2, y2) 2.0

(x0, y0) 1.0

210 IBM Visualization Data Explorer: User’s Reference

 Map

 Modules

So, for example, if source is “positions,” destination is “data,” input is an
isosurface, and map is a 3-D field with temperature values, then Map steps through
the “positions” component of the isosurface and finds the temperature value for
each position, interpolating if necessary. The resulting temperature value is placed
in the “data” component of the output field.

If map is a value, the Map module adds to output a destination component that (1)
contains one element for each element of the source component and (2) derives its
dependency from the source component. All elements in this component have the
value given them by map.

The following table summarizes some of the uses of Map.

Notes:

1. The dimensionality of the positions in input and in map must agree and must
also match the dimensionality of the connections in map. That is, if map has 2-D
connections (quads or triangles), the positions must also be 2-D.

2. There are few constraints on Map’ functionality. For instance, the Color module
is generally preferable for performing mapping, because that module prevents
the formation of invalid colors, whereas Map does not.

Source Destination Use

“data” “colors” color mapping

“positions” “data” data mapping

“data” “data” arbitrary tabular function

 Components
If input is a field, a new component name, specified by destination, is created.
All other input components are propagated to the output.

If input is an array, the output is an array.

If any source values cannot be interpolated, an “invalid positions” or “invalid
connections” component (depending on the dependency of the source parameter)
will be created, and values that are not interpolated will be marked invalid.

Example Visual Programs
AlternateVisualizations.net

Interop.net

ManipulateGroups.net

MappedIso.net

PlotTwoLines.net

Thunder_cellcentered.net

UsingMap.net

SIMPLE/Map.net

 See Also
 AutoColor, Color, MapToPlane

 Chapter 2. Functional Modules 211

 MapToPlane

 MapToPlane

 Category
Realization

 Function
Maps a 3-dimensional field onto a plane.

 Syntax
plane = MapToPlane(data, point, normal);

 Inputs
Name Type Default Description

data field none data to be mapped

point vector center of
object

a point on the map plane

normal vector [0 0 1] normal to the map plane

 Outputs
Name Type Description

plane field mapped plane

 Functional Details
This module creates an arbitrary cutting plane through 3-dimensional space and
interpolates data values onto it.

data must be a field with 3-dimensional connections (i.e., cubes or
tetrahedra).

point is a vector value specifying a point on the cutting plane. If this
parameter is not specified, Data Explorer uses the center of the
bounding box of data.

normal is a vector value specifying the normal to the map plane and is
interpreted as the end point of a vector from the origin (not from
point). The parameter defaults to [0 0 1].

Notes:

1. To create a plane parallel to one of the axes along a connections boundary (for
regular data) it is more efficient to use the Slab module with zero thickness,
because it performs no interpolation.

2. MapToPlane (unlike Slab) adds a “normals” component to the plane, so that
the result is shaded. To eliminate the shading, remove the “normals”
component with the Remove module or turn off the shading with the Shade
module.

3. If the specified plane is precisely at the edge of the data, the output may or
may not appear, depending on the direction of normal.

212 IBM Visualization Data Explorer: User’s Reference

 MapToPlane

 Modules

 Components
Creates new “positions,” “connections,” and “normals” components. New
“components” of all other input components are created (e.g., the “data”
component) and contain values interpolated from the originals.

Example Visual Programs
AlternateVisualizations.net

ContoursAndCaption.net

ThunderGlyphSheet.net

SIMPLE/MapToPlane.net

 See Also
 AutoColor, Map, Remove, RubberSheet, Shade, Slab

 Chapter 2. Functional Modules 213

 Mark

 Mark

 Category
Structuring

 Function
Marks a component.

 Syntax
output = Mark(input, name);

 Inputs
Name Type Default Description

input field none the field with a component to be
marked

name string none the component to be marked

 Outputs
Name Type Description

output field the field with the named component
marked

 Functional Details
This module marks a specified component of a specified input as “data” (without
moving the “marked” component from its original position).

input is the field that contains the component to be marked.

name specifies the component to be marked.

Once a component has been marked, all modules that operate on the “data”
component will now operate on the name component. If a “data” component
already exists in input, it is saved as the “saved data” component. If a “saved
data” component already exists, the module returns an error.

Notes:

1. Many modules operate only on the “data” component of a field. The functional
scope of such modules can be expanded by using the Mark module to mark,
for example, “positions” or “colors” components.

2. Mark adds an attribute, called “marked component,” that lists the name of the
component that was marked. The Unmark module will use this attribute if no
component is specified for unmarking.

214 IBM Visualization Data Explorer: User’s Reference

 Mark

 Modules

 Components
Moves the “data” component to the “saved data” component and copies the name
component to the “data” component. All other input components are propagated to
the output.

Example Visual Programs
MakeLineMacro.net

PlotLine.net

PlotLine2.net

PlotTwoLines.net

Sealevel.net

UsingMap.net

WarpingPositions.net

SIMPLE/MarkUnmark.net

 See Also
 Compute, Extract, Options, Rename, Replace, Unmark

 Chapter 2. Functional Modules 215

 Measure

 Measure

 Category
Transformation

 Function
Performs length, area, and volume measurements on an input object.

 Syntax
output = Measure(input, what);

 Inputs
Name Type Default Description

input field none data to be measured

what string input
dependent

measurement to be performed

 Outputs
Name Type Description

output value result of the measurement

 Functional Details
input is the field to be measured. It is expected to have a “connections”

component consisting of lines, surfaces, or volumes.

what specifies the type of measurement to be performed.

� Unless the parameter value is “element,” the module performs a
measurements of the field as a whole. The structure of the
output is identical to that of the input, with each field (or
composite field) replaced by an array containing a simple scalar
floating-point measurement of that field.

The default value of what is determined by the
“connections”-component element type. If the connections
element type is:

“lines,” the parameter defaults to “length.”
“triangles” or “quads,” the parameter defaults to “area.”
is “cubes” or “tetrahedra,” the parameter defaults to
“volume.”

� If what is “element,” the module performs element-by-element
measurement on input, replacing the “data” component with
scalar arrays that are connection dependent and contain the
measurement of each connection element. If the connections
element type is:

“lines,” the resulting “data” component will contain the
length of each line segment.
“triangles” or “quads,” the resulting “data” component will
contain the area of each triangle or quad.

216 IBM Visualization Data Explorer: User’s Reference

 Measure

 Modules

is “cubes” or “tetrahedra,” the resulting “data” component
will contain the volume of each cube or tetrahedron.

The options for what are shown in the following table:

Table 7. Options for Measure's What Parameter

Connection
element What Measurement

lines “length” total length of line segments

 “element” length of each line segment

 “area” 2-D area enclosed by connected line segments. If a
series of segments is not closed, a segment connecting
the first and final points of the sequence is added.

faces “area” total area of all faces

 “element” area of each face

triangles,
quads

 “area” total area of all surface elements

 “element” area of each surface element

 “volume” 3-D volume enclosed by connected sets of surface
elements. If a connected set of surface elements is not
closed, the approximate closing surface(s) is(are) found
by triangulating the openings in the surface (defined by
loops of unshared edges).

polylines “length” total length of all lines

 “element” length of each line

tetrahedra,
cubes

 “element” volume of each 3-D element

 “volume” total volume of all 3-D elements

Notes:

1. The default value for lines and polylines is “length”; “area” is the default for triangles,
quads, and faces; and “volume” is the default for tetrahedra and cubes.

2. All sequences of line segments are handled independently when measuring area.
Sequences are defined by following exactly identical coordinate points, rather than
by following identical point indices. Overlapping volumes are not detected. Similarly
for volumes enclosed by surface elements, a volume is defined by triangles
consisting of identical vertex positions, rather than by triangles consisting of identical
point indices. Overlapping volume is not detected.

3. Be aware of the following: Curves are closed by straight lines regardless of the
geometry from which they were derived. The surfaces added to close volumes are
triangulated as if planar. This module ignores any transforms in the object. For
example, if the object is scaled by 2 (with the Scale module), the volume will not
increase.

Example Visual Program
ThunderGlyphSheet.net

 Chapter 2. Functional Modules 217

 Measure

 See Also
 Compute

218 IBM Visualization Data Explorer: User’s Reference

 Message

 Modules

 Message

 Category
Debugging

 Function
Displays a message to the user.

 Syntax
Message(message, type, popup)

 Inputs
Name Type Default Description

message string none message to be displayed

type string "message" type of information: error,
warning, or message

popup flag 0 0: Do not display message in
pop-up window
1: Display message in pop-up
window

 Functional Details
message specifies the message to be displayed.

type specifies the kind of message. Information messages are
presented unaccompanied, but error messages are preceded by
ERROR, and warnings by WARNING.

popup specifies whether the message is to be displayed in a pop-up
window as well as in the Message Window. In script mode,
messages are sent to the xterm, regardless of the pop-up setting.

Note: The display of any or all categories of message can be prevented by
deactivating the appropriate toggle buttons in the Options pull-down menu of the
Message Window.

Example Visual Program
UsingMessage.net

 See Also
 Echo, Format, Print

 Chapter 2. Functional Modules 219

 Morph

 Morph

 Category
Transformation

 Function
Applies a binary morphological operator to a field.

 Syntax
output = Morph(input, operation, mask);

 Inputs
Name Type Default Description

input field none input data

operation string "erode" the operation to be applied

mask value or string "box" the mask element

 Outputs
Name Type Description

output field morphologically transformed input

 Functional Details
This module applies one of the following binary morphological operators to input
data:

“close” “dilate” “erode” “open”

The input data are treated much as booleans are in the C language (e.g., 0 =
FALSE and nonzero = TRUE).

The mask parameter (see below) is centered on each position in input in turn, and
all positions corresponding to “1” in the mask are considered for operation (see
below).

input is the input data to be operated on.

operation specifies one of the following:

� “dilate”: The output corresponding to a given data value is true
(1) if any data value in input corresponding to a “1” in mask is
true. Otherwise, the output is false.

� “erode”: The output corresponding to a given data value is true
(1) if all the data values corresponding to a “1” in mask are true.
Otherwise, the output is false.

� “close”: is dilation followed by erosion.
� “open” is erosion followed by dilation.

Note: Successive openings or closings have no additional
effect.

220 IBM Visualization Data Explorer: User’s Reference

 Morph

 Modules

mask specifies one of the following:

� a Filter name (see “Filter” on page 137)
� an explicit matrix.

The function of both is to identify potential operands for operation
(see above). The dimensions must be odd, and the default is the 3
× 3 box filter of Filter.

The module supports all data types and, like Filter, requires regular connections
(quads or cubes). It handles both position- and connection-dependent data.

If the data are vectors, each element of a vector is transformed independently.
Because the module returns a 0/1 output, its output is always TYPE_UBYTE.

Note: Data along the boundary are replicated to fill the overlap region for the filter.

 Components
Modifies the “data” component. All other components are propagated to the output.

Example Visual Program
UsingMorph.net

 See Also
 Compute, Filter

 Chapter 2. Functional Modules 221

 Normals

 Normals

 Category
Rendering

 Function
Computes normals for shading a specified surface.

 Syntax
normals = Normals(surface, method);

 Inputs
Name Type Default Description

surface geometry field none surface on which to compute
normals

method string "positions" component on which to base
normals

 Outputs
Name Type Description

normals field the surface with normals

 Functional Details
surface is the surface for which normals are to be created.

method is the computational method used to create normals for the
specified surface. If the parameter specifies:

� “connections,” the normal for each connection in the field is
computed as the perpendicular to that element.

� “faces,” the normal for each face is computed as the
perpendicular to that face. This method is intended for use with
faces, loops, and edges data (see “Faces, Loops, and Edges
Components” on page 24 in IBM Visualization Data Explorer
User’s Guide).

� “positions,” the normal at each position in the field is determined
by averaging the face normals of the quads or triangles incident
on the point. Each face normal is weighted by the distance
between the position and the centroid of the face.

Notes:

1. The Normals module assumes that the triangles or quads have consistent point
orderings so that the average of the face normals at a given point is
meaningful.

2. The Shade module also adds normals to a surface.

3. Smooth shading (method=“positions”) is not supported for faces, loops, and
edges data. However, you can convert faces, loops, and edges data to
triangles using Refine, and then perform smooth shading.

222 IBM Visualization Data Explorer: User’s Reference

 Normals

 Modules

 Components
Creates a “normals” component that is position dependent. All other input
components are propagated to the output.

Example Visual Programs
WarpingPositions.net

 See Also
 FaceNormals, Shade, Display, Render, Image

 Chapter 2. Functional Modules 223

 Options

 Options

 Category
Structuring

 Function
Associates one or more attributes with a specified object.

 Syntax
output = Options(input, attribute, value, ...);

 Inputs
Name Type Default Description

input object none object whose attributes are to be
set

attribute string no default attribute to be added

value value or string
or object

no default value of the attribute

... additional attribute-value pair(s)

 Outputs
Name Type Description

output object the object with attributes added

 Functional Details
This module associates attributes with an object. (Attributes can be extracted from
an object with the Attribute module.) Attributes are used by some modules to
determine the behavior of a particular input object. For example, you can add
attributes to objects to tell the Plot module how to draw markers on particular lines
(see Table 8 on page 225 and Plot). While there is a set of attributes which Data
Explorer modules understand, you can also add your own attributes to objects, to
be interpreted by user-written modules.

You can remove an already present attribute by setting its value to null.

input names the object to which one or more attributes are to be added.

attribute names the attribute to be added.

value specifies the value of the attribute

... One or more additional pairs of parameters, each specifying an
attribute and a value to be associated with input.

A single Options module can specify a maximum of 21 attribute-object pairs. In
the user interface, the default number of enabled tab-pairs is two. (Tabs can be
added to the module icon and removed with the appropriate ...Input Tab options
in the Edit pull-down menu of the VPE.)

224 IBM Visualization Data Explorer: User’s Reference

 Options

 Modules

Attributes may also be added to arrays to add information which may be needed to
interpret an array as a Data Explorer component. For example, you can add a “ref”
attribute with a value of “positions” to an integer list which you intend to be used as
a connections component in a field. This use of Options should be done only with
a solid understanding of the Data Explorer data model. See “Standard Attributes”
on page 25 in IBM Visualization Data Explorer User’s Guide.

Table 8. Attributes which have predefined meanings in Data Explorer

Attribute name Attribute values Relevant module

label any user-supplied label Plot

scatter 1 or 0 Plot

mark “circle”, “diamond”, “dot”,
“square”, “star”, “triangle”,
“x”

Plot

mark every positive integer Plot

mark scale positive scalar Plot

fuzz integer Display, Render, Image

ambient positive scalar Display, Render, Image

diffuse positive scalar Display, Render, Image

specular positive scalar Display, Render, Image

shininess positive integer Display, Render, Image

shade 0 or 1 Display, Render, Image

opacity multiplier positive scalar Display, Render, Image
(for volume rendering)

color multiplier positive scalar Display, Render, Image
(for volume rendering)

texture a texture map Display, Image

antialias “lines” Display, Image

line width positive integer Display, Image

direct color map 0 or 1 Display

cache 0 or 1 Display, Image

rendering mode software or hardware Display, Image

rendering approximation “none”, “box”, “dots”, or
“wireframe”

Display, Image

render every positive integer Display, Image

pickable 0 or 1 Pick

marked component string Mark, Unmark

 Components
The output object is the same as the input object except for the added attributes.
All input components are propagated to the output.

 Chapter 2. Functional Modules 225

 Options

Example Visual Programs
PlotTwoLines.net

FatLines.net

 See Also
 Attribute, AutoAxes, Display, Plot, Render

226 IBM Visualization Data Explorer: User’s Reference

 Output

 Modules

 Output

 Category
Special

 Function
Defines an output parameter for a macro.

 Syntax
Available only through the user interface.

 Inputs
Name Type Default Description

parameter object none output value of macro

 Functional Details
Use the configuration dialog box of this module to specify the parameter name, add
a brief description, and specify the tab position on the macro icon. For additional
information, see “Creating Macros” on page 149 in IBM Visualization Data Explorer
User’s Guide.

Example Macro and Program
MakeLineMacro.net is used by the visual program PlotLine2.net

 See Also
 DXLOutput, Input, DXLInput, DXLInputNamed

 Chapter 2. Functional Modules 227

 Overlay

 Overlay

 Category
Rendering

 Function
Overlays one image with another.

 Syntax
combined = Overlay(overlay, base, blend);

 Inputs
Name Type Default Description

overlay image none overlay image

base image none base image

blend scalar, vector,
field, or string

.5 0: for base image only
1: for overlay image only

 Outputs
Name Type Description

combined image combined image

 Functional Details
overlay is the overlay image.

base is the base image under overlay.

blend determines how the module combines the two images and what the
output image will be. If the parameter is:

� a scalar value: the resulting image (combined) is equal to

((1 - blend) × base) + (blend × overlay)

� a vector or string: this value will be interpreted as an RGB color.
The combined image is the base image except for the pixels
where the base image is equal to blend. These pixels will be
taken from the overlay image. This specification allows you to
perform chromakeying.

Two pixels are considered to have the same color if the
corresponding component colors (i.e., red, green, blue) of one
are each within 0.1% of the other.

The blend can also be specified (in a string) as one of the
standard X Window System** colors (see “Color” on page 75).

� a field of position-dependent data: each data value in the field
is used as a blending value to overlay the two pixels (one from
each image) corresponding to that position. That is, the
blending is pixel by pixel. The “blending” field must have a grid
that is compatible with both the overlay and the base image.

228 IBM Visualization Data Explorer: User’s Reference

 Overlay

 Modules

The blend values in the field must be scalar values between 0.0
and 1.0.

Notes:

1. The images base and overlay must be the same size and have the same grid
positions. The “colors” component must be dependent on “positions.” The base
and overlay images must both have the same partitioning (or none).

2. To add two images together, or subtract one from the other, use the Compute
module. First mark the “colors” component in each image (with the Mark
module), then, use Compute to perform the desired operation on each. Finally,
use Unmark to return the modified data to the “colors” component.

 Components
Modifies the “colors” component. All other input components are propagated to the
output.

Example Visual Program
UsingOverlay.net

 See Also
 Arrange, Color, Compute, Display, Render

 Chapter 2. Functional Modules 229

 Parse

 Parse

 Category
Annotation

 Function
Extracts values from an input string.

 Syntax
value, ... = Parse(input, format);

 Inputs
Name Type Default Description

input string none string to be operated on

format string "%s" format control string

 Outputs
Name Type Description

value value or string value extracted from input string

... value or string additional values extracted

 Functional Details
This module uses a format-control string (format) to extract values from a specified
input string (input).

Note: The control string resembles a C-language scanf format string.

The “%” symbol in the control string specifies that extraction is to begin at the
corresponding position in the input string. The character immediately following this
symbol specifies the type of value to be extracted:

c: single character
 d: integer

f: floating point (with a fixed number of digits after the decimal point)
g: general (scientific notation if appropriate)

 s: string.

The number of outputs is equal to the number of extractions specified in format.

 Example
Given the statements:

string = "temperature = 45.8 index = 4 color = red"

format = "temperature = %f index = %d color = %s"

output1, output2, output3 = Format(string, format);

the three outputs of parse will be 45.8, 4, and “red.”

230 IBM Visualization Data Explorer: User’s Reference

 Parse

 Modules

Example Visual Program
UsingParse.net

 See Also
 Format

 Chapter 2. Functional Modules 231

 Partition

 Partition

 Category
Import and Export

 Function
Partitions a data set for parallel processing.

 Syntax
partitioned = Partition(input, n, size);

 Inputs
Name Type Default Description

input field or group none field to be partitioned

n integer machine
dependent

maximum number of subparts

size integer one primitive threshold for partitioning

 Outputs
Name Type Description

partitioned field or group set of partitioned fields

 Functional Details
This module partitions a data set for parallel processing on an SMP multiprocessor
machine. (You must be using Data Explorer SMP to take advantage of this
feature.) Its output is a composite field, which is treated as a single entity by other
modules.

input is the input object to be partitioned. If this parameter specifies a
group, each group member is partitioned with the same n and size
parameters.

n is the approximate number of partitions to be created. However,
the module will not create partitions smaller than size (see below).

size is the minimum number of connection elements per partition.

If n × size is larger than the total number of points, the output
number of partitions may be smaller than n

If you do not specify n or size, appropriate default values are
supplied, depending on the number of processors available.

Note: On a uniprocessor machine, n = 1 by default. Consequently, the same
programs can be run on uniprocessor and multiprocessor machines without
modification.

232 IBM Visualization Data Explorer: User’s Reference

 Partition

 Modules

 Components
All components in the input are propagated to the output.

Example Visual Programs
ExampleSMP.net

 See Also
 Import

 Chapter 2. Functional Modules 233

 Pick

 Pick

 Category
Special

 Function
Outputs a pick structure.

 Syntax
picked = Pick(pickname, imagename, locations, reexecute, first,

persistent, interpolate, object, camera);

 Inputs
Name Type Default Description

pickname string none name of cached picks

imagename string none name of cached scene

locations vectorlist no default 2-D screen coordinate pick
positions

reexecute flag none cause reexecution whenever
pick list is reset

first flag 1 0: include all “picks”
1: include only first “picks”

persistent flag 1 0: “picks” not saved
1: “picks” saved

interpolate integer 0 0: no data interpolation
1: nearest vertex interpolation 2:
interpolate

object object no default object to be “poked”

camera camera none camera used to create scene
picked in

 Outputs
Name Type Description

picked field pick structure

 Functional Details
Picking involves using the mouse to determine information about an object
rendered in an image. The user may select one or more points on the screen by
positioning the mouse and pressing the left button; each such action is referred to
as a “poke.” Each poke may intersect the object at one or more places or may miss
the object altogether. Each intersection is called a “pick.” For example, a poke on
a spherical isosurface will result in two picks, one on the front surface and one on
the rear.

Individual subobjects in a structured scene may be made unpickable by attaching
an attribute named “pickable”, with a value of 0 (zero), to the root of the subobject,
using the Options module.

234 IBM Visualization Data Explorer: User’s Reference

 Pick

 Modules

The information returned by Pick in picked includes the positions in the (xyz)
world-coordinate system at which the picks occurred. These positions (contained in
the “positions” component of picked) may be used to determine the coordinates of
points on objects, to start streamlines, or to label points on the surface (by using
AutoGlyph appropriately). These kinds of operations can be done directly in a
visual program, without writing a special module.

In addition to the pick positions, picked contains information identifying the
individual elements of the object structure that was picked. This information can be
used to select elements of the object structure at any level down to the connections
element and vertex closest to the pick point. See IBM Visualization Data Explorer
Programmer’s Reference for an example module that uses the position information
contained in the pick structure.

pickname is used only by the user interface and is not intended to be set by
users.

imagename is used only by the user interface and is not intended to be set by
users.

locations is a list of 2 dimensional screen coordinates pixel positions
identifying the picks. If you are using the Image tool, this parameter
is set automatically for you by the user interface. If you are using
SuperviseWindow and SuperviseState, then the events output of
SuperviseState should be used to provide this input.

reexecute is used only by the user interface and is not intended to be set by
users.

first specifies whether all picks generated by a poke intersecting an
object are to be added to the pick structure or only the first pick
(i.e., the pick closest to the viewpoint):

0 All picks are added to the output.

1 Only the first pick is reported for each poke.

persistent specifies whether or not picks are saved between executions:

0 Picks are not saved.

1 Picks are saved and are deleted only when the user makes
new pokes.

Note: When new picks are made, the previous pick points are
discarded.

interpolate specifies whether a “data” component should be created in picked
and, if so, how the interpolation of values for that component should
be performed.

If the interpolate parameter is set to 1 or 2, the Pick output object
will contain a set of components matching the set of dependent
components in the picked object. Each of the components in the
output object is dependent on the “positions” component of picked.
For components that are dependent on connections in the picked
object, the data for the picked element will be placed in the output
component.

 Chapter 2. Functional Modules 235

 Pick

For components that are dependent on positions in the picked
object, the data placed in the output object is determined by one of
two options:

1 = “nearest vertex”
The data corresponding to the vertex nearest the pick point
is extracted.

2 = “interpolated data”
The data is interpolated from the vertex data of the picked
element.

In either case, an additional component is created (called “closest
vertex”) that receives the coordinates of the vertex closest to the
pick point among the vertices of the picked element.

Note: Regardless of which of the two options is selected, if
different picks result in different sets of components or different data
types in components of the same name, an error results.

object allows the user to override the object being picked. By default, this
object is the one rendered in the Image window associated with the
previous execution of the graph. If the scene consists of several
objects collected before rendering, and if only some of them are to
be made pickable, the user can pass those objects directly into
Pick. The object parameter also makes it possible to pick in an
object that lies in the same coordinate space as the scene does but
is not in fact a part of the scene.

camera sets the camera used to create the scene being picked in. If you
are using the Image tool, this parameter is set automatically for you
by the user interface. If you are using SuperviseState and
SuperviseWindow, then you must provide the camera used to
render the scene.

Note: Pick currently supports surfaces, lines, and points. Picking does not
support volume elements; if a poke is made on a volume object in the image, no
picks will result.

Example Visual Program
PickStreamline.net

 See Also
 SuperviseWindow, SuperviseState

“Using Pick” on page 87 in IBM Visualization Data Explorer User’s Guide.

236 IBM Visualization Data Explorer: User’s Reference

 Plot

 Modules

 Plot

 Category
Annotation

 Function
Creates a 2-dimensional plot.

 Syntax
plot = Plot(input, labels, ticks, corners, adjust, frame, type, grid,

aspect, colors, annotation, labelscale, font, input2,
label2, ticks2, corners2, type2,
xticklocations, y1ticklocations, y2ticklocations,
xticklabels, y1ticklabels, y2ticklabels);

 Inputs
Name Type Default Description

input field or group none data to be plotted

labels string list {“x,” “y”} axis label

ticks integer list 10 approximate number of tick
marks

corners vector list or
object

{[xmin, ymin],
[xmax, ymax]}

plot limits

adjust flag input
dependent

0: end points not adjusted
1: end points adjusted to match
 tick marks

frame integer 0 framing style for plot

type string list "lin" plot type

grid integer 0 grid style

aspect scalar or
string

1.0 y:x (aspect) ratio of resulting plot

colors vector list or
string list

appropriate colors for annotation

annotation string list "all" annotation objects to be colored

labelscale scalar 1.0 scale factor for labels

font string standard font for labels

input2 field or group no default second set of data to be plotted

label2 string {“y2”} label for second y-axis

ticks2 integer input
dependent

approximate number of tick
marks for second y-axis.

corners2 vector or
object

{[ymin, ymax]} plot limits for second y-axis

type2 string "lin" plot type for second y-axis

xticklocations scalar list appropriate x tick locations

y1ticklocations scalar list appropriate y1 tick locations

 Chapter 2. Functional Modules 237

 Plot

Name Type Default Description

y2ticklocations scalar list appropriate y2 tick locations

xticklabels string list xticklocations x tick labels

y1ticklabels string list y1ticklocations y1 tick labels

y2ticklabels string list y2ticklocations y2 tick labels

 Outputs
Name Type Description

plot field the plot

 Functional Details
This module creates a 2-dimensional plot from a line or set of lines. The following
plot characteristics can be set on the line or lines with the Options module (in the
Structuring category) before they are passed to Plot: line label, line marker type,
marker size, number of markers, and the choice of creating a scatter plot or not
(see “Creating a Legend” on page 240, “Using Line Markers” on page 240, and
“Scatter Plots” on page 241).

input is a field or group of fields, where each field has 1-dimensional
positions representing the “x”-values, and 1-dimensional data
representing the “y”-values. If the input is a group of Fields, each
Field is plotted as a separate line.

There can be a “connections” component of element type “lines”
connecting the positions; if a connections component for a given
Field does not exist, the module adds one. The input can have a
“colors” component, in which case the output plot preserves those
colors. If the input does not have a “colors” component, the line is
colored white.

labels specifies the labels for the axes of the plot.

ticks specifies the number of tick marks to be placed on the plot axes.
The default is 10.

If the parameter value is a single integer, then approximately that
many tick marks are placed along the axes. If the parameter list is
a two-element integer list, the first element is interpreted as the
approximate number of tick marks to be placed on the x-axis; the
second element, the approximate number to be placed on the
y-axis.

corners specifies the limits of the plot axes. (The default limits are set by
the input line or lines.) The specification can be a vector list or an
object. If the specification is a vector list, then all points that lie
outside of corners are eliminated from the plot. If the specification
is an object (such as a group of lines), the module determines the
minimum and maximum x- and y-values for the entire object and
uses those to set the plot limits.

adjust determines whether the axes end at tick marks or not.

238 IBM Visualization Data Explorer: User’s Reference

 Plot

 Modules

frame determines how the plot is framed. In all cases, axes and tick
labels are drawn on the left side and bottom of the plot. For frame
= 1, additional lines (without ticks) are drawn on the right side and
top of the plot. For frame = 2, lines and major and minor ticks are
drawn on the right side and top of the plot.

type specifies the plot type. It is a string or string list and must be:

1. “lin” (linear plot)
2. “log” (logarithmic plot)
3. any two-element combination of these (e.g., {“lin,” “lin”} or {“log,”

“lin”}). If type is a single string, both the x- and the y-axis are of
that type. If type is two strings, then the first string applies to
the x-axis while the second string applies to the y-axis.

grid specifies whether and how to draw grid lines along major ticks. If
grid = 0, no grid lines are drawn. If grid = 1, then grid lines are
drawn horizontally along major ticks. If grid = 2, then grid lines are
drawn vertically along major ticks. If grid = 3, grid lines are drawn
both horizontally and vertically along major ticks. If grid is not
equal to 0, adjust is set to 1.

aspect allows you to set the approximate y:x aspect ratio of the resulting
plot. You can also use the Scale module before Plot to adjust the
aspect ratio. The default is an aspect ratio of 1.0. If you want Plot
to simply use the actual aspect ratio of the data, set aspect to
“inherent”. Note that if a second plot is drawn (i.e. input2 is
provided), aspect is set to 1.0 even if “inherent” is specified.

colors together with annotation (see below), can be used to set the color
of one or more components of the plot.

colors: specifies a single color (an RGB vector or color-name
string) or a list of colors. Color-name strings must be from the list
of defined color strings (see “Color” on page 75).

If colors is a single string and annotation is not specified or is
“all,” then that color is used for all axes annotation. Otherwise, the
number of colors in colors must match the number of annotation
strings exactly and in one-to-one correspondence. By default, a
background is not drawn.

annotation can be one of the following: “all,” “axes,” “background,” “grid,”
“labels,” or “ticks.”

labelscale allows you to change the size of the axes and tick labels. For
example, to make the labels twice as large, specify labelscale = 2.

font specifies the font used for labels. The default is “standard,” which
uses a fixed font for the tick-mark labels and a variable font for the
axes labels. You may specify font as any of the defined fonts
supplied with Data Explorer:

area gothicit_t pitman roman_ext

cyril_d greek_d roman_d script_d

fixed greek_s roman_dser script_s

gothiceng_t italic_d roman_s variable

gothicger_t italic_t roman_tser

For more information, see Appendix E, “Data Explorer Fonts” on
page 307 in IBM Visualization Data Explorer User’s Guide.

 Chapter 2. Functional Modules 239

 Plot

The Plot module can also generate a second set of lines and a second y-axis on
the right side of the plot. If a second plot is drawn, the aspect ratio defaults to 1.
For this second plot and axis, you must repeat several specifications:

input2 is a second field or group of fields (see input above).

label2 is the label for the second y-axis.

ticks2 is the approximate number of ticks for the second y-axis. A
negative integer specifies outward, as opposed to inward, pointing
ticks.

corners2 (see corners on page 238)
specifies the min and max for the second “y”-axis.

type2 specifies the type of second y-axis and must be either “log” or “lin.”

xticklocations
explicit set of tick locations for the x axis. If specified, overrides the
values for tick locations as determined from ticks.

y1ticklocations
explicit set of tick locations for the first y axis. If specified, overrides
the values for tick locations as determined from ticks.

y2ticklocations
explicit set of tick locations for the second y axis. If specified,
overrides the values for tick locations as determined from ticks.

xticklabels list of labels to be associated with the specified xticklocations. If
xticklabels is specified and xticklocations is not specified, then
xticklocations to the integers 0 to n-1, where n is the number of
items in xticklabels.

y1ticklabels list of labels to be associated with the specified y1ticklocations. If
y1ticklabels is specified and y1ticklocations is not specified,
then y1ticklocations to the integers 0 to n-1, where n is the
number of items in y1ticklabels.

y2ticklabels list of labels to be associated with the specified y2ticklocations. If
y2ticklabels is specified and y2ticklocations is not specified,
then y2ticklocations to the integers 0 to n-1, where n is the
number of items in y2ticklabels.

Creating a Legend: To create a legend for the plot, use Options to set a “label”
attribute on the incoming lines. Plot will then create an appropriate plot legend and
place it in the upper right corner (see the first example below). The legend
contains a short line segment with a color matching that of the line it corresponds
to, along with the label for the line. The “label” attribute can also be set in the Data
Explorer file format (see Appendix B, “Importing Data: File Formats” on page 241
in IBM Visualization Data Explorer User’s Guide).

Using Line Markers You may also choose markers for your plot lines. You may
set a “mark” attribute on the input lines using the Options module. “mark” should
have as a value one of the following: “circle,” “diamond,” “dot,” “square,” “star,”
“triangle,” or “x.” By default, a mark is placed at every point on the line. You can
also set a “mark every” attribute with an integer as a value. For example, the value
3 would cause every third point to be marked. You can control the size of the mark
using the “mark scale” attribute, which applies a scale factor to the default mark

240 IBM Visualization Data Explorer: User’s Reference

 Plot

 Modules

size. For example, a “mark scale” value of 2 would make the marks twice as large.
If you are using the “label” attribute, the mark will also appear in the legend.

Note: The “dot” mark type will only be visible if you also set the “scatter” attribute
to 1 (see “Scatter Plots”).

Different colored lines If you want your lines to have different colors, simply pass
them through the Color module before passing them to Plot.

Scatter Plots To create a scatter plot (with no line drawn between markers), set
the “scatter” attribute on the line to 1 (one). (The default is a line between
markers.):

Notes:

1. If corners is more restrictive than the ticklocations, then the given locations
outside the corners are not shown.

2. If corners is less restrictive than the given ticklocations, or if corners is not
specified, then all given tick locations are shown, whether or not there is data
there.

3. If ticklocations is specified, then the data range determines the extent of the
axes, unless corners is specified, in which case the given corners are used.

 Bar Charts
If the input to Plot has a “data” component that is dependent on “connections”
rather than “positions,” a bar chart is created.

 Components
Creates “positions,” “connections,” and “colors” components.

Example Visual Programs
PlotLine.net

PlotLine2.net

PlotTwoLines.net

PlotSpecifyTicks.net

 See Also
 Compute, Construct, Histogram, Options

 Chapter 2. Functional Modules 241

 Post

 Post

 Category
Transformation

 Function
Changes the data dependency of a field.

 Syntax
output = Post(field, dependency);

 Inputs
Name Type Default Description

input field none field whose data dependency is
to be changed

dependency string "positions" data dependency desired

 Outputs
Name Type Description

output field field with data dependency changed

 Functional Details
input is a field whose data dependency on one component is to be

changed to dependency on another component.

dependency is the output dependency desired and must be “positions” or
“connections.”

If you are changing the dependency from “positions” to “connections,” all
components that are dependent on “positions” (but do not contain references to that
or any other component, such as colors, data, and normals) are changed to
“connections” dependency. The Post module uses an average of the vertex values
for each connection element to determine the new value for the component.

Similarly, when changing from connection dependence to position dependence, the
Post module associates with a vertex the average of the values for each connection
touching that vertex.

 Components
Creates a new component for each input component that is either dependent on
connections if dependency is “positions” or that is dependent on positions if the
dependency is “connections.” The dependencies of the new components are set to
dependency.

242 IBM Visualization Data Explorer: User’s Reference

 Post

 Modules

Example Visual Programs
Thunder_cellcentered.net

SIMPLE/Post.net

 Chapter 2. Functional Modules 243

 Print

 Print

 Category
Debugging

 Function
Prints an object.

 Syntax
Print(object, options, component);

 Inputs
Name Type Default Description

object object none object to print

options string "o" printing options

component string or string
list

all
components

component or components to
print

 Functional Details
This module prints object according to the specifications in options. Each
character in the options string specifies printing a particular portion of the
information about the object:

r recursively traverse the object

o print only the top level of the object

d print first and last 25 items in arrays, as well as headers

D print all the items in arrays as well as headers

x for debugging, print in expanded form (lists the object address, the object tab,
and the reference counts of the object)

n print object to n levels.

The component parameter controls which components of object are printed. By
default, all components are printed. All values are printed in decimal format except
for byte array data, which are printed in hexadecimal.

In the user interface, the output of the Print module appears in the Message
window.

Script Language Example
In the following example, the first call to Print does not recurse through the
structure but simply reports (prints) that both is a group with two members. The
second call recurses through the group and reports that each member of the group
has six components, what those components are, and how many items there are in
each. The third call provides this information and, in addition, the first and last 25
items in the “data” component of each field. The final call prints out all of the items
in both the “positions” and “box” components.

244 IBM Visualization Data Explorer: User’s Reference

 Print

 Modules

electrondensity = Import("/usr/lpp/dx/samples/data/watermolecule");

electrondensity = Partition(electrondensity);

iso1 = Isosurface(electrondensity,ð.1);

iso2 = Isosurface(electrondensity,ð.3);

both = Collect(iso1,iso2);

Print(both);

Print(both,"r");

Print(both,"d", "data");

Print(both,"D", {"positions", "box"});

 See Also
 Echo, Describe

 Chapter 2. Functional Modules 245

 Probe

 Probe

 Category
Special

 Function
Outputs an x,y,z point.

 Syntax
Available only through the user interface.

 Outputs
Name Type Description

point vector x,y,z position of probe point

 Functional Details
This tool generates an x,y,z position from mouse-driven input. see “Using Probes
(Cursors)” on page 85 in IBM Visualization Data Explorer User’s Guide.

Note: Because the output is in the units of the rendered object, the result may be
unexpected if you have scaled or translated the object before rendering it, since the
x,y,z point will be the transformed units.

Example Visual Programs
AnnotationGlyphs.net

PlotLine2.net

ProbeText.net

UsingClipPlane.net

UsingProbes.net

UsingStreakline.net

 See Also
 Pick, ProbeList

246 IBM Visualization Data Explorer: User’s Reference

 ProbeList

 Modules

 ProbeList

 Category
Special

 Function
Outputs a list of x,y,z points.

 Syntax
Available only through the user interface.

 Outputs
Name Type Description

point vector list x,y,z positions of probe points

 Functional Details
This tool generates a list of x,y,z positions from mouse-driven input. For more
information about probes, see “Using Probes (Cursors)” on page 85 in IBM
Visualization Data Explorer User’s Guide.

Note: Because the output is in the units of the rendered object, the result may be
unexpected if you have scaled or translated the object before rendering it, since the
x,y,z point will be the transformed units.

Example Visual Programs
AnnotationGlyphs.net

PlotLine2.net

ProbeText.net

UsingClipPlane.net

UsingProbes.net

UsingStreakline.net

 See Also
 Pick, Probe

 Chapter 2. Functional Modules 247

 QuantizeImage

 QuantizeImage

 Category
Transformation

 Function
Converts an RGB image to a byte image with a colormap

 Syntax
images = QuantizeImage(Images, nColors);

 Inputs
Name Type Default Description

images image, image
series

(none) image(s) to quantize

nColors integer 256 maximum number of colors to
use

 Outputs
Name Type Description

images image, image
series

resulting quantized image(s)

 Functional Details
QuantizeImage converts an image from a format in which the “colors” component is
a list of RGB (red, green, blue) vectors, with as many entries as there are pixels in
the image, to a format in which the “colors” component is simply a list of unsigned
bytes which are interpreted as pointers into a color table.

QuantizeImage sets a “direct color map” attribute of 1 on its output. When the
output images is passed to Display, this will force Display to use the colormap
specified by QuantizeImage, rather than a default colormap (see “Using Direct
Color Maps” on page 111). This will be the case even if you set the environment
variable DX8BITCMAP to 1. You can use the Options module to set a “direct color
map” attribute of 0 on the output of QuantizeImage to force Display to use a shared
colormap.

images is the image or series of images to be quantized.

nColors is the maximum number of entries in the color table.

The output images will be a new image or series of images in which the color table
is attached as a component called “color map”.

The advantage of using QuantizeImage is that the image will consume much less
memory.

248 IBM Visualization Data Explorer: User’s Reference

 QuantizeImage

 Modules

 Components
Changes the “colors” component. Adds a “color map” component.

Example Visual Programs
SIMPLE/QuantizeImage.net

 See Also
Render, ReadImage, WriteImage, Display, Options

 Chapter 2. Functional Modules 249

 ReadImage

 ReadImage

 Category
Import and Export

 Function
Reads an image from an image file.

 Syntax
image = ReadImage(name, format, start, end, delta, width, height);

 Inputs
Name Type Default Description

name string "image" file name

format string "rgb" or input
dependent

file format

start integer first frame first movie frame

end integer last frame last movie frame

delta integer 1 delta of images to be read

width integer input
dependent

width of image

height integer input
dependent

height of image

delayed flag environment
dependent

use delayed colors if present in
file

colortype string environment
dependent

data type for colors

 Outputs
Name Type Description

image image or image
series

resulting image

 Functional Details
This module supports four basic file formats: RGB and TIFF (Tag Image File
Format), GIF (Graphics Interchange Format), and MIFF.

name is the name of the image file.

If name contains a series, the parameters start, end, and delta can
be used to read a subset of the images (see parameter
descriptions).

format specifies the format of the image file. This parameter is not
required if name includes a file extension defining the format (see
following table). If name is specified without the appropriate
extension, then the file format must be specified. If format is

250 IBM Visualization Data Explorer: User’s Reference

 ReadImage

 Modules

specified as “rgb,” and name is “image,” the module will first try to
open image.rgb. If that fails, it will then try to open image.

start and end specify the first and last frame to be read from an image file
containing a series.

delta specifies the increment in counting the frames in the range from
start to end. For example, if the first and last frames are 10 and
20 respectively, and delta = 2, the output (image) is a series group
with six members (indexed from 0 to 5). Frame numbers (10, 12,...,
20 in this example) are preserved as the series position number.

width and height
are used only for RGB format files. The module obtains information
about the size and number of images from name.size, an ASCII file
containing the string “w×h×f,” (where w and h are pixel width and
height of image respectively, and f is the number of frames).

If the .size file is not available, then width and height can be used
to specify the size of the image(s).

delayed specifies whether ReadImage should create a “delayed color” image
if the image file is stored in an “image with colormap” format. By
default, ReadImage will create a “delayed color” image if possible,
unless the environment variable DXDELAYEDCOLORS is set to 0, or the
delayed parameter is set to 0.

colortype specifies whether the colors in the image should be byte or floating
point. By default, ReadImage will create byte colors unless the
DXPIXELTYPE environment variable is set to DXFloat, or colortype is
set to “float”.

Notes:

1. RGB format files can be either “rgb” or “r+g+b.” The file format “rgb” contains
the image with the bytes for the red, green, and blue values interleaved. An
alternate file format is “r+g+b,” where three output files contain the
non-interleaved image: “name.r,” “name.g,” and “name.b.”

TIFF format files must be either full color RGB images (TIFF Class R) or palette
color RGB images (TIFF Class P), uncompressed (“Compression=1”), and
interleaved (“PlanarConfiguration=1”). If the extension is not part of the name,
the format must be set to “tiff.” Information about the size of the image is
obtained from the file itself, since TIFF files are self-describing. (For more
information on file formats, see “WriteImage” on page 374.)

2. The default behavior of ReadImage is different in Data Explorer version 3.1.4
and above in terms of the type of image it creates internally. If you do not
specify the environment variable DXPIXELTYPE as “DXFloat”, ReadImage will

File Type Format
Specifier

Expected File
Extension(s)

Multiframe/Series
Data

RGB "rgb"
“r+g+b”

.rgb and .size

.r, .g, .b, .size,
Yes

TIFF "tiff" .tiff Yes

GIF "gif" .gif No

MIFF "miff" .miff Yes

 Chapter 2. Functional Modules 251

 ReadImage

create byte colors internally. This will result in reduced storage required for the
image, and will only affect networks that require the colors to be of type float, in
which case the ReadImage parameter “colortype” should be set to “float”, or the
DXPIXELTYPE environment variable should be set to “DXFloat”.

3. ReadImage will also maintain the delayed color status of an image, as will be
the case for GIF, some TIFF, and some MIFF format files. If the visualization
program requires full colors for each pixel, set the ReadImage “delayed”
parameter to false (0) or set the environment variable DXDELAYEDCOLORS to 0.

4. If you want to convert an image file that does not already have delayed colors
to one that does, use ReadImage to load it in and then use QuantizeImage to
make it delayed color.

 Components
Creates an output with “positions,” “connections,” and “colors” components.

Example Visual Programs
ReadImage.net

UsingFilter.net

 See Also
 WriteImage

252 IBM Visualization Data Explorer: User’s Reference

 ReadImageWindow

 Modules

 ReadImageWindow

 Category
Windows

 Function
Retrieves the contents of a window

 Syntax
image = ReadImageWindow(where);

 Inputs
Name Type Default Description

where window none window identifier

 Outputs
Name Type Description

image field image found in window

 Functional Details
ReadImageWindow retrieves the contents of a window.

where is the window identifier, and should be the where output of either
Display or Image.

Note that on some platforms, if you call ReadImageWindow on a window that is
partially obscured (by another window for example), some pixels may be missing
from the output image.

 See Also
Display, Image

 Chapter 2. Functional Modules 253

 Receiver

 Receiver

 Category
Special

 Function
Receives an object from a Transmitter.

 Syntax
Available only through the user interface.

 Outputs
Name Type Description

object object the object received

 Functional Details
To maintain the modularity and readability of large programs, Data Explorer
provides two tools that allow connections between input and output tabs of
separate modules without the use of a visible connecting line. These tools,
Transmitter and Receiver, allow you to separate visual programs into logical blocks.
For example, the output of several logical blocks can be transmitted to another
block that receives them, collects them, and produces an image.

Receivers and Transmitters can also be used to communicate information between
pages in the Visual Program Editor (see “Creating pages in the VPE” on page 115
in IBM Visualization Data Explorer User’s Guide). Pages are a valuable way of
structuring complex visual programs into logical blocks.

Note: Macros provide another way of structuring visual programs in logical blocks
(see 7.2, “Creating and Using Macros” on page 149 in IBM Visualization Data
Explorer User’s Guide).

To remotely connect input and output tabs:

1. Select a Transmitter tool (in the Special category in the tool palette) and place
it near the output tab of the module that is to be “connected.”

2. Connect the module’s output tab to the Transmitter’s input tab.

3. Select a Receiver tool (also in the Special category), and place it near the input
tab of the other module that is to be “connected.”

4. Connect the Receiver’s output tab to the second module’s input tab.

The Transmitter and Receiver are now connected.

The Receiver automatically assumes the same name as the Transmitter. More
than one Receiver can be connected to a single Transmitter and they assume the
same name until a new Transmitter is placed on the VPE canvas.

254 IBM Visualization Data Explorer: User’s Reference

 Receiver

 Modules

Notes:

1. To change the name of a Transmitter and Receiver, use the Notation field of
the appropriate configuration dialog box (see “Entering Values in a
Configuration Dialog Box” on page 107 in IBM Visualization Data Explorer
User’s Guide). Changing the name of a Transmitter changes the name of all
the Receivers connected to it. Changing the name of a Receiver affects only
that receiver.

2. For more information see “Using Transmitters and Receivers” on page 106 in
IBM Visualization Data Explorer User’s Guide.

Example Visual Programs
Many of the example visual programs use receivers and transmitters, including:

AlternateVisualizations.net

Imide_potential.net

 See Also
 Transmitter

 Chapter 2. Functional Modules 255

 Reduce

 Reduce

 Category
Import and Export

 Function
Computes a reduced-resolution version (or group of versions) of a field.

 Syntax
reduced = Reduce(input, factor);

 Inputs
Name Type Default Description

input field none field to be reduced

factor scalar list or
vector list

2 reduction factor(s)

 Outputs
Name Type Description

reduced field or group set of reduced-resolution data

 Functional Details
Reduces the resolution of regularly connected grids. Box filtering is applied to
minimize aliasing effects in the components that are associated with the grid. It
filters and reduces the number of items in the “data” component of the input field
and also in any components that are position or connection dependent.

input is the field to be reduced. It must have regular connections.
factor specifies the reduction factor(s) to be used in reducing the

resolution of the field.

If this parameter specifies:

� a single scalar value: the output is reduced by that factor in all dimensions.
� a vector: each vector element is applied to the corresponding dimension.
� a list of scalars or vectors: the output is a group of fields, each with the

corresponding factor applied.

 Components
All components in the input are propagated to the output. Components dependent
on “positions” or “connections” are filtered.

Example Visual Programs
GeneralImport2.net

ManipulateGroups.net

VolumeRendering.net

SIMPLE/Reduce.net

256 IBM Visualization Data Explorer: User’s Reference

 Reduce

 Modules

 See Also
 Refine, Select, Display

 Chapter 2. Functional Modules 257

 Refine

 Refine

 Category
Import and Export

 Function
“Refines” a grid or changes its element type.

 Syntax
refined = Refine(input, level);

 Inputs
Name Type Default Description

input field none field to be “refined”

level integer or
string

1 level of refinement

 Outputs
Name Type Description

refined field "refined" input

 Functional Details
This module resamples a grid at a finer resolution or changes the element type.

input is the object to be refined. It must have “connections” or “faces.”

level specifies either the level or the type of refinement:

� an integer specifies the number of levels (in powers of 2) of
refinement. New positions and connections are added, and any
components that are position or connection dependent are
interpolated linearly and placed in the output.

For quads and triangles, one level of refinement increases the
number of elements by a factor of 4, two levels by a factor of
16, and so on. For cubes and tetrahedra, one level of
refinement increases the number of elements by a factor of 8,
two levels by a factor of 64, and so on.

� a string has two values: “tetrahedra” refines cubes to
tetrahedra; “triangles” refines quads or faces to triangles.

 Components
All components in the input are propagated to the output. The “connections”
component is modified.

258 IBM Visualization Data Explorer: User’s Reference

 Refine

 Modules

Example Visual Programs
ManipulateGroups.net

SIMPLE/Refine.net

 See Also
 Reduce, Display

 Chapter 2. Functional Modules 259

 Regrid

 Regrid

 Category
Realization

 Function
Maps scattered points onto a grid.

 Syntax
output = Regrid(input, grid, nearest, radius, exponent, missing);

 Inputs
Name Type Default Description

input field or vector
list

none field with positions to regrid

grid field none grid to be used as template

nearest integer or
string

1 number of nearest neighbors to
use

radius scalar or
string

"infinity" radius from grid point

exponent scalar 1.0 weighting exponent

missing value no default missing value to be inserted if
necessary

 Outputs
Name Type Description

output field regridded field

 Functional Details
This module uses a specified set of scattered points (input) to assign data values
to every position of a specified grid.

input should be either (1) a field with a 1-, 2-, or 3-dimensional “positions”
component or (2) a list of 1-, 2-, or 3-dimensional vectors. In the
second case, the vectors are interpreted as positions.

grid is required. It specifies the grid to be used as a base for creating a
“connections” component. The dimensionality of positions in this
grid must match that of the positions in input. The specified grid
could be created with the Construct module.

nearest must be an integer or the string “infinity.” An integer value specifies
the number of nearest points (to each grid point) to be used in
computing an average data value for that grid point.

radius specifies the maximum radius (from the grid point) within which the
nearest neighbors can be found. The parameter must specify a
scalar value or the string “infinity.”

260 IBM Visualization Data Explorer: User’s Reference

 Regrid

 Modules

exponent The averaging method is a weighted average. The expression for
this average is 1/radius(exponent). The default value is 1.0, reducing
the expression to the reciprocal of the radius.

missing is used when radius is set to a value other than “infinity.” The
parameter specifies how to treat those grid points for which no
points in input occur within the specified radius.

If missing is not set, the module creates an “invalid positions”
component, and grid points with no assigned data value are
invalidated. If missing is set, the data value is inserted for the
missing data values. It must match the data component of input in
rank, type, and shape.

All components that are position-dependent are treated in the same
way as the “data” component.

Note: To remove invalidated positions, use the Include module. However, it is not
necessary to remove invalidated positions in order to have them treated as invalid
by other modules.

 Components
Adds a “connections” component. The “positions” and “connections” components
are those of grid while all components in input that depend on “positions” will be
present in the output, modified by averaging.

Example Visual Program
SIMPLE/Regrid.net

 See Also
 Connect, Construct, Include, AutoGrid

 Chapter 2. Functional Modules 261

 Remove

 Remove

 Category
Structuring

 Function
Removes components from a field.

 Syntax
output = Remove(input, name);

 Inputs
Name Type Default Description

input field none the field from which to one or
more components are to be
removed

name string or string
list

none the component(s) to be removed

 Outputs
Name Type Description

output field the field without the named component(s)

 Functional Details
This module creates an output field containing all components of the input field
except those specified by name.

 Components
All input components are propagated to the output except those specified by name.

 See Also
 Rename, Shade

262 IBM Visualization Data Explorer: User’s Reference

 Rename

 Modules

 Rename

 Category
Structuring

 Function
Renames a component in a field.

 Syntax
output = Rename(input, oldname, newname);

 Inputs
Name Type Default Description

input field none the field containing the
component to be renamed

oldname string none the original name of the
component

newname string "data" the new name assigned to the
component

 Outputs
Name Type Description

output field field containing the renamed component

 Functional Details
This module creates a field (output) in which all occurrences of a specified
component (oldname) in input have been assigned a new name (newname).

 Components
All input components are propagated to the output. The component oldname is
renamed to newname.

Example Visual Programs
AlternateVisualizations.net

ReadImage.net

UsingMorph.net

 See Also
 Extract, Mark, Remove, Replace, Unmark

 Chapter 2. Functional Modules 263

 Render

 Render

 Category
Rendering

 Function
Renders an object.

 Syntax
image = Render(object, camera, format);

 Inputs
Name Type Default Description

object object none object to be rendered

camera camera none camera to be used for rendering

format string standard format of resulting image

 Outputs
Name Type Description

image image resulting image

 Functional Details
This module uses a specified camera to create an image of an object.

object specifies the object to be rendered, which can contain surfaces,
volumes, or combinations of surfaces and volumes.

Note: The current algorithm does not support coincident volumes
or volumes in perspective. (See “Display” on page 109 for a
discussion of Data Explorer rendering capabilities.)

The specified object must contain a “colors,” “front colors,” or “back
colors” component. Many modules add a default color. In addition,
volume rendering (i.e., of cubes or tetrahedra) requires an
“opacities” component. For surfaces, the lack of an “opacities”
component implies an opaque surface.

camera is the camera used to create the image.

Note: A transformed camera cannot be used for this parameter.

format is reserved for future use.

Notes:

1. The rendering properties of an object (e.g., shading) can be changed with the
Options or Shade module (see “Display” on page 109). Render always
invokes the software renderer and so ignores the “render mode” attribute.

2. Render creates 24-bit images if the DXPIXELTYPE environment variable is set
to DXByte (the default is 96-bit images).

264 IBM Visualization Data Explorer: User’s Reference

 Render

 Modules

3. If you use the Display or Image tool rather than the Render module, Data
Explorer will automatically choose a hardware-appropriate format for you. It is
generally preferable to use one of these tools unless you want to operate on
the image itself. For example, filtering the image or arranging several images
together requires the Render module.

4. The interactive image-manipulation options provided by Data Explorer in the
user interface require the Image tool. See “Controlling the Image: View
Control...” on page 74 in IBM Visualization Data Explorer User’s Guide.

See Display for information on:

“Changing Rendering Properties” on page 112
“Differences between Hardware and Software Rendering” on page 115
“Shading” on page 114
“Object fuzz” on page 114
“Coloring Objects for Volume Rendering” on page 113

 Components
Creates “positions,” “connections,” and “colors” components for the resulting image.

Example Visual Programs
PlotLine.net

UsingCompute.net

UsingMorph.net

SIMPLE/Arrange.net

 See Also
 Arrange, Compute, Display, Filter, Image, Options, WriteImage

 Chapter 2. Functional Modules 265

 Reorient

 Reorient

 Category
Rendering

 Function
Changes the orientation of an image or group of images.

 Syntax
image = Reorient(image, how);

 Inputs
Name Type Default Description

image field or group none image(s) to be reoriented

how integer none specific change of orientation

 Outputs
Name Type Description

image image reoriented image

 Functional Details
This module rotates or inverts an image. (Use Refine or Reduce to change the
size of an image.)

Note: This module is intended for images that will be displayed directly without
rendering (i.e., using Display without a camera). So if you are rendering an object
(using Image, Display with a camera, or Render), you should instead use
Transpose, Rotate, Scale, and Translate to reorient that object before rendering it.

image is an image or group of images. An image is (1) a regular
2-dimensional field or the output of Render or ReadImage and (2)
must have the following characteristics.

� regular 2-dimensional positions and quad connections
 � position-dependent colors
� origin at [0, 0].

how specifies one of several possible reorientations. Allowed values are
0–7 (see figure).

266 IBM Visualization Data Explorer: User’s Reference

 Reorient

 Modules

Figure 4. Reorientation of the letter F.

If how is set to 0, the image’s appearance does not change. However, if the origin
or deltas are not in the preferred image order (i.e., origin at [0, 0] and x varying
fastest), the internal layout is altered to the preferred order. The result is a more
efficient display of the image.

Thus Reorient can be used to align images from two sources so that the pixels are
in one-to-one correspondence. A tool like Compute can then operate on
corresponding pixels from the two images.

 Components
Modifies the positions and connections components and reorders the
position-dependent components.

Example Visual Program
Topo.net

 See Also
 Display, Overlay, ReadImage, Reduce, Refine, Render

 Chapter 2. Functional Modules 267

 Replace

 Replace

 Category
Structuring

 Function
Replaces a component in a field or inserts a value list as a component.

 Syntax
out = Replace(srcfield, dstfield, srcname, dstname);

 Inputs
Name Type Default Description

srcfield field or value
list

none the field containing the
replacement component

dstfield field none the field in which the
replacement component is to be
placed

srcname string "data" the component of srcfield that
is to be placed in dstname

dstname string "data" the new name of the
replacement component

 Outputs
Name Type Description

out field dstfield with component from srcfield

 Functional Details
If srcfield is a field: the module puts the specified replacement component
(srcname) from srcfield into dstfield and gives it a new component name
(dstname).
If srcfield is a value list: the module inserts srcfield into dstfield as the
dstname component (srcname is ignored).
If dstfield is a group: the hierarchy of srcfield must match exactly.

 Components
All components of dstfield are propagated to the output. The srcname component
of srcfield replaces or is added as the dstname component in the output.

Example Visual Programs
AlternateVisualizations.net

Imide_potential.net

UsingStreakline.net

268 IBM Visualization Data Explorer: User’s Reference

 Replace

 Modules

 See Also
 Extract, Mark, Rename, Unmark

 Chapter 2. Functional Modules 269

 Reset

 Reset

 Category
Interactor

 Function
Outputs one of two values.

 Syntax
Available only through the user interface.

 Outputs
Name Type Description

output value or string output of Reset

 Functional Details
This module outputs one (“set”) value on the first execution after the Reset toggle
has been activated and another (“unset”) on all subsequent executions. The
module will continue to output the “unset” value in subsequent executions until the
toggle is activated again. The default values are “1” (set) and “0” (unset), but these
can be modified to any value or string with Set Attributes... dialog box (selected
from the Edit pull-down menu of the Interactor control panel).

Possible uses of the Reset interactor include driving the reset toggle of the Get
module to initialize a program state and restarting an external simulator.

Note: This interactor cannot be data driven.

Example Visual Programs
MultipleDataSets.net

UsingSwitchAndRoute.net

 See Also
 GetLocal

270 IBM Visualization Data Explorer: User’s Reference

 Ribbon

 Modules

 Ribbon

 Category
Annotation

 Function
Produces a ribbon of specified width from a specified line.

 Syntax
ribbon = Ribbon(line, width);

 Inputs
Name Type Default Description

line field none line to be drawn as a ribbon

width scalar input
dependent

ribbon width

 Outputs
Name Type Description

ribbon field the line turned into a ribbon

 Functional Details
This module is intended for use with any module that creates lines.

line specifies a line to be turned into a ribbon. If this line has a
“normals” component (as would occur, for example, if the input field
curl were used with Streamline), the resulting ribbon shows a twist
corresponding to this component (at each point of the input line, the
ribbon is oriented in the direction pointed to by the normal).

If a “normals” component is not found but the input contains a
“binormals” component, normals are derived by crossing the
binormals with the approximated tangents.

If no “normals” component is present, the ribbon’s orientation is
based on the path of the line.

width specifies the width of the ribbon in the same units as those of the
original space. If this parameter is not specified, the system
provides an appropriate value (1/50 of the diagonal of the bounding
box of line).

The value used is attached to the output object as a “Ribbon width”
attribute (which can be extracted with the Attribute module).

Note: Different colors can be specified for the two sides of the ribbon. Use the
Color module and specify “front colors” and “back colors.”

 Chapter 2. Functional Modules 271

 Ribbon

 Components
Creates new “positions,” “connections,” and “normals” components. All other
components are propagated to the output.

Example Visual Programs
ThunderStreamlines.net

UsingStreakline.net

 See Also
 Color, Streakline, Streamline, Tube

272 IBM Visualization Data Explorer: User’s Reference

 Rotate

 Modules

 Rotate

 Category
Rendering

 Function
Rotates an object.

 Syntax
output = Rotate(input, axis, rotation, ...);

 Inputs
Name Type Default Description

input object none object to be rotated

axis integer or
string

"y" axis of rotation

rotation scalar 0 amount of rotation (in degrees)

... additional axis-rotation pair(s)

 Outputs
Name Type Description

output object object marked for rotation

 Functional Details
This module prepares a specified object for one or more rotations about a specified
axis.

Note: A Transform object containing the specified transformation matrix is inserted
at the root of the object. This transform is applied during rendering.

Each rotation is specified by an axis-rotation parameter pair.

input specifies the object to be rotated.

axis specifies the axis of rotation. Allowed values are strings (“x,” “y,” or
“z”) or integers (0, 1, or 2).

rotation specifies the extent of rotation (in degrees) about the specified axis.

Note: Rotation is counterclockwise in a right-handed coordinate
system and relative to the origin of world-coordinate space.

A single Rotate module can specify a maximum of 22 rotations (i.e., axis-rotation
pairs). In the user interface, the default number of corresponding tab pairs is two.
(Tabs can be added to the module icon and removed with the appropriate ...Input
Tab options in the Edit pull-down menu of the VPE.)

Note: If you want to use the mouse to rotate the object in the Image window, see
“Rotating the Object” on page 77 in IBM Visualization Data Explorer User’s Guide.

 Chapter 2. Functional Modules 273

 Rotate

 Components
All input components are propagated to the output.

Example Visual Programs
Imide_potential.net

UsingLights.net

 See Also
 Scale, Translate

274 IBM Visualization Data Explorer: User’s Reference

 Route

 Modules

 Route

 Category
Flow Control

 Function
Routes an object through selector-specified output paths.

 Syntax
output = Route(selector, input);

 Inputs
Name Type Default Description

selector integer or
integer list

0 paths for routing the input object

input value list,
string list, or
object

no default object to be routed

 Outputs
Name Type Description

output object a possible path for routing the input object

... additional paths

 Functional Details
This module determines which of several output paths are executed.

selector specifies the output paths that are to be executed. If the specified
value is:

� NULL or 0 (zero): none of the modules that use Route output
are executed.

� n: specifies the consumer that is executed. If n = 1, the
modules that use Route’s first output are executed; if n = 2, the
modules that use Route’s second output are executed; and so
on.

This parameter may also specify a list of integers, allowing multiple
output paths to execute.

input specifies an object to be routed to the output paths that are to be
executed.

A single Route module can specify a maximum of 21 outputs. In the user interface,
the default number of enabled tabs is two. (Tabs can be added to the module icon
and removed with the appropriate ...Input Tab options in the Edit pull-down
menu of the VPE.)

 Chapter 2. Functional Modules 275

 Route

Notes:

1. Modules that use outputs that are not specified in the selector list are said to
be “killed” and are not executed. If there are no outputs associated with
selector (e.g., if selector is NULL or 0), none of the modules that use Route
output is allowed to execute: all are killed.

In general, modules that use the results of a killed module are also killed. An
exception is Collect, which runs unless all inputs are killed (either by Route or
by errors in modules that produce its inputs).
.

2. In the scripting language, if the Route module is to work properly, it and
modules downstream of it must be executed as part of a macro.

 Components
All input components are propagated to the selected outputs.

Example Visual Programs
UsingSwitchAndRoute.net

UsingMessage.net

SIMPLE/Route.net

 See Also
 Collect, Switch

 Chapter 4, “Data Explorer Execution Model” on page 37 in IBM Visualization Data
Explorer User’s Guide.

276 IBM Visualization Data Explorer: User’s Reference

 RubberSheet

 Modules

 RubberSheet

 Category
Realization

 Function
Deforms a surface, using the data values of that surface.

 Syntax
graph = RubberSheet(data, scale, min, max);

 Inputs
Name Type Default Description

data scalar field none the field defining the surface to
be deformed.

scale scalar input
dependent

displacement scaling

min scalar or field 0.0 offset to be applied to the
surface data values

max scalar or field maximum
data value

value used for setting the
maximum displacement

 Outputs
Name Type Description

graph scalar field the deformed field

 Functional Details
This module takes a specified scalar surface or line field and displaces each point
by an amount based on the data value at that point, as follows:

displacement = scale × (data – min)

(see parameter descriptions).

data specifies the surface to be deformed.

scale is the scale factor used in calculating the displacement.

If this parameter is not specified, the module provides a scale factor
calculated as follows:

scale = (ð.1 \ diagonal of data boundary box) ÷ (max – min)

If min is a field, the value used is the minimum data value of that field.

The resulting scale factor is attached to the output object as a
“RubberSheet scale” attribute (which can be extracted with the Attribute
module).

min is the offset applied to the data values before they are scaled.

 Chapter 2. Functional Modules 277

 RubberSheet

max is used to determine a scale factor according to the formula shown
above, if scale is not specified.

Notes:

1. If the input data have no “normals” component (e.g., the output of Slab), the
perpendicular to the first element is used as the displacement direction. In that
case, for a positive scale factor and a positive data value, the surface is
displaced in the direction given by the right-hand rule applied to the
connections at the surface (i.e., with the thumb representing the direction of
displacement and the fingers following the order of points in the connections).

2. If the input does have a “normals” component, the displacement at the surface
is determined by the dependencies of the data and of the normals:

� If both the data and the normals are position dependent, the surface is
displaced in the direction of the normal at each point.

� If both are connection dependent, each face of the input is displaced as a
whole in the direction indicated by the normal for that face. The amount of
displacement is proportional to the data value for that face. Additional
sides are added to each displaced face to complete the “box”; box sides
are not shared between neighboring faces.

� If the data are position dependent and the normals are connection
dependent, each face is displaced in the direction indicated by the normal
for that face, but the amount of displacement varies across the face in
proportion to the data value. Additional sides are added to each displaced
face to complete the “box”; box sides are not shared between neighboring
faces.

� If the data are dependent on connections and the normals are dependent
on positions, the displaced faces will be parallel to the original faces,
displaced by an amount proportional to the data value for that face.
Additional sides are added to each displaced face to complete the “box”;
box sides of neighboring faces are coincident.

3. If the input data are 1- or 2-dimensional, an additional dimension is added in
the resulting graph.

4. If no colors are present, the module adds a default color.

5. RubberSheet automatically adds shading to the output graph.

 Components
Creates new “positions” and “connections” components. All other components, with
the exception of “normals,” are propagated to the output.

Example Visual Programs
AlternateVisualizations.net

RubberTube.net

ThunderGlyphSheet.net

UsingSwitchAndRoute.net

SIMPLE/Rubbersheet.net

278 IBM Visualization Data Explorer: User’s Reference

 RubberSheet

 Modules

 See Also
 FaceNormals, MapToPlane, Normals, Slab

 Chapter 2. Functional Modules 279

 Sample

 Sample

 Category
Realization

 Function
Samples the points of a field (surface or volume).

 Syntax
samples = Sample(manifold, density);

 Inputs
Name Type Default Description

manifold field none the surface or volume to be
sampled

density integer 100 approximate number of samples

 Outputs
Name Type Description

samples field a set of samples of the field

 Functional Details
This module samples a specified field at a set of more or less uniformly spaced
points.

manifold is the field to be sampled.

density is the approximate number of output samples.

Note: Any components in the original field (manifold) that are position or
connection dependent are mapped onto the output samples. In either case, the
component in the output field will be position dependent (“dep” “positions”).
(Because the output of Sample is a set of unconnected positions, you cannot use
mapped samples as input to modules that need to interpolate values, such as
DivCurl or MapToPlane).

 Components
Creates a new “positions” component. All other components, except for
“connections,” are propagated to the output.

Example Visual Programs
MappedIso.net

RubberTube.net

Streamline.net

UsingCompute2.net

UsingGlyphs.net

280 IBM Visualization Data Explorer: User’s Reference

 Sample

 Modules

 See Also
 AutoGlyph, Glyph, Map, Streakline, Streamline

 Chapter 2. Functional Modules 281

 Scalar

 Scalar

 Category
Interactor

 Function
Generates successive scalar values over a specified range.

 Syntax
Available only through the user interface.

 Inputs
Name Type Default Description

data object no default object from which interactor
attributes can be derived

refresh flag 0 reset the interactor

min scalar minimum data
value

minimum output value

max scalar maximum
data value

maximum output value

delta scalar input
dependent

increment between successive
scalar outputs

method string input
dependent

defines interpretation of delta
input

decimals integer input
dependent

number of decimal places to be
displayed in output values

label string "Scalar" global name applied to interactor
stand-ins

 Outputs
Name Type Description

output scalar interactor output

 Functional Details
This interactor allows the user to interactively change a scalar value. The range of
values over which the module acts is governed by its attributes (e.g., minimum,
maximum, and delta), which in turn are either (1) specified by the parameter values
in its Set Attributes... dialog box or (2) determined from input to the module
(e.g., a data field). In the second case, the interactor is said to be “data driven.”

If the interactor is not data-driven, its attributes are taken from its Set
Attributes... dialog box (accessed from the Edit pull-down menu in the Control
Panel).

Because the module is interactive, the user can change the current controlling
value directly in Scalar’s control panel.

282 IBM Visualization Data Explorer: User’s Reference

 Scalar

 Modules

Note: The module’s control panel is invoked by double-clicking on its icon in the
VPE window. Its configuration dialog box is accessed from the Edit pull-down
menu in the same window.

data is the object (usually a data field) from which the interactor can
derive any or all of the minimum, maximum, and delta attributes
when their corresponding input tab is up.

refresh resets the interactor so that the output is computed from the current
input. If refresh = 0 (the default), the output is recomputed only if
the current output does not lie within the range of the current data.
The default for the output of the interactor is the midpoint of min
and max.

min and max specify the minimum and maximum values of the interactor’s scalar
output. If set, these values override those implied by data.

If neither min nor data is specified, the interactor uses the minimum
set in the Set Attributes... dialog box.

If neither max nor data is specified, the interactor uses the maximum
set in the Set Attributes... dialog box.

delta specifies a scalar value as a factor for calculating the increment
between successive outputs over the specified range. The actual
value depends on the interpretation specified by method (see
below).

method specifies the interpretation of delta:

� “rounded”: the increment (max – min) × delta is rounded to a
“nice” number. The spacing between successive values will
approximate the interval specified by delta. (For example, the
default value of 0.01 specifies an interval of 1/100 of the
specified range.)

� “relative”: the interpretation is the same as for “rounded,” but the
increment is not rounded.

� “absolute”: delta is the absolute value of the interval. (If delta
has not been specified, its default is 1.)

The default value for method depends on other input. The
default is:

– “rounded” if data is specified or if both min and max are
specified.

– “absolute” in all other cases.

decimals specifies the number of decimal places displayed in the interactor.
If neither data nor delta is specified, the interactor uses the value
in its own Set Attributes... dialog box.

label is the global label of all instances of the corresponding interactor
stand-in. An interactor instance’s local label (set from the Control
Panel) overrides a global label. By default, the global label is set by
the user interface.

 Chapter 2. Functional Modules 283

 Scalar

Example Visual Programs
Many example visual programs use the Scalar interactor.
DataDrivenInteractors.net uses a data-driven scalar interactor.

 See Also
 Integer, IntegerList, ScalarList, Vector, VectorList

284 IBM Visualization Data Explorer: User’s Reference

 ScalarList

 Modules

 ScalarList

 Category
Interactor

 Function
Generates a list of scalar values.

 Syntax
Available only through the user interface.

 Inputs
Name Type Default Description

data object no default object from which interactor
attributes can be derived

refresh flag 0 reset the interactor

min scalar minimum data
value

minimum output value

max scalar maximum
data value

maximum output value

delta scalar input
dependent

increment between successive
scalar outputs

method string input
dependent

defines interpretation of delta
input

decimals integer input
dependent

number of decimal places to be
displayed in output values

nitems integer 11 number of items in the initial list

label string "ScalarList" global name applied to interactor
stand-ins

 Outputs
Name Type Description

output scalar list interactor output

 Functional Details
This interactor allows the user to interactively change a list of scalar values. The
range over which the module acts is governed by its attributes (e.g., minimum,
maximum, and delta), which in turn are either (1) specified by the parameter values
in its Set Attributes... dialog box or (2) determined from input to the module
(e.g., a data field). In the second case, the interactor is said to be “data driven.”

If an interactor is not data-driven, its attributes are taken from its Set
Attributes... dialog box (accessed from the Edit pull-down menu in the Control
Panel).

 Chapter 2. Functional Modules 285

 ScalarList

Because the module is interactive, the user can change the current controlling
value directly in the control panel.

Note: The module’s control panel is invoked by double-clicking on its icon in the
VPE window. Its configuration dialog box is accessed from the Edit pull-down
menu in the same window.

data is the object (usually a data field) from which the interactor can
derive any or all of the minimum, maximum, and delta attributes
when the corresponding input tabs are up.

refresh resets the interactor so that the output is computed from the current
input. If refresh = 0 (the default), the output is recomputed only if
the current output does not lie within the range of the current data.

min and max specify the minimum and maximum values of the interactor’s scalar
output. If set, these values override those implied by data.

If neither min nor data is specified, the interactor uses the minimum
set in the Set Attributes... dialog box.

If neither max nor data is specified, the interactor uses the maximum
in the Set Attributes... dialog box. This value overrides the
value implied by data.

delta specifies a scalar value as a factor for calculating the increment
between successive outputs over the specified range. The actual
value depends on the interpretation specified by method (see
below).

method specifies the interpretation of delta:

� “rounded”: the increment (max – min) × delta is rounded to a
“nice” number. The spacing between successive values will
approximate the interval specified by delta. (For example, the
default value of 0.01 specifies an interval of 1/100 of the
specified range.)

� “relative”: the interpretation is the same as for “rounded,” but the
increment is not rounded.

� “absolute”: delta is the absolute value of the interval. (If delta
has not been specified, its default is 1.)

The default value for method depends on other input. The
default is:

– “rounded” if data is specified or if both min and max are
specified.

– “absolute” in all other cases.

decimals specifies the number of decimal places displayed in the interactor.
If neither data nor delta is specified, the interactor uses the value
in its own Set Attributes... dialog box.

nitems specifies the number of items in the interactor list. These are
evenly spaced between the minimum and maximum values (see
above). For example, if this parameter is given a value of 5, and
the range is 0–100, the output list will be {0, 25, 50, 75, 100 }.

Note: If nitems changes, a new list is computed.

286 IBM Visualization Data Explorer: User’s Reference

 ScalarList

 Modules

label is the global label of all instances of the corresponding interactor
stand-in. An interactor instance’s local label (set from the Control
Panel) overrides a global label. If not specified, the global label is
set by the user interface.

Example Visual Program
ContoursAndCaption.net

 See Also
 Integer, IntegerList, Scalar, Vector, VectorList

 Chapter 2. Functional Modules 287

 Scale

 Scale

 Category
Rendering

 Function
Scales a specified object.

 Syntax
output = Scale(input, scaling);

 Inputs
Name Type Default Description

input object none object to be scaled

scaling scalar or
vector

[1 1 1] scaling factor along x, y, and z
axes

 Outputs
Name Type Description

output object object marked to be scaled

 Functional Details
This module prepares a specified object for scaling along all three axes.

Note: A Transform object containing the specified transformation matrix is inserted
at the root of the object. This transform is applied during rendering.

input specifies the object to be scaled.

scaling is the scaling factor. If the parameter value is scalar, the object is
scaled by that amount along each axis. The default value is [1 1 1],
which produces no change in the input object.

Note: Scaling is relative to the origin of world-coordinate space.

 Components
All input components are propagated to the output.

Example Visual Program
AnnotationGlyphs.net

 See Also
 Plot, Rotate, Transform, Translate

288 IBM Visualization Data Explorer: User’s Reference

 ScaleScreen

 Modules

 ScaleScreen

 Category
Rendering

 Function
Increases or decreases size of all screen objects (e.g. captions and colorbars) by
specified factor.

 Syntax
output, newcamera = ScaleScreen(object, scalefactor,
 finalres, currentcamera);

 Inputs
Name Type Default Description

object field none object to scale

scalefactor scalar 1 scale factor for screen objects

finalres integer no default final (x) resolution of desired
image

currentcamera camera no default current camera used to view
object

 Outputs
Name Type Description

output object object with screen objects scaled as
specified

newcamera camera current camera updated by specified
scale factors

 Functional Details
The ScaleScreen module is used to scale all the screen objects within object by a
specified amount. It does not affect the size of any other objects in the input
object. A typical use of ScaleScreen is when you have created an image for
display using Render, and you wish to re-render it at a higher resolution for printing,
for example. You would need to use ScaleScreen to increase the pixel size of any
screen objects (such as captions and color bars) in the object before re-rendering.
Note that ScaleScreen is called implicitly when you use the “Allow Rerendering”
option of the Save/Print Image dialogs of the Image window, so you do not need to
use it. You would only need to use ScaleScreen if you are doing the re-rendering
yourself using Render or Display.

object specifies the object containing screen objects to be scaled.

scalefactor specifies the scale factor you intend to use on re-rendering; for
example scalefactor should be set to 2 if you want the re-rendered
image to be twice as large.

 Chapter 2. Functional Modules 289

 ScaleScreen

finalres is used as an alternative to scalefactor, if, for example, you know
that you want your final resolution of your image to be 1000 pixels.
If you specify final_res, you must also provide the currentcamera
input.

currentcamera is the camera you are currently using to view your object. This can
be the output of AutoCamera or Camera, or the camera output of
Image.

The output output is the object with all screen objects scaled. If you specify
currentcamera, then the module will, in addition, output newcamera, which is a new
camera for you to use with Render or Display.

 Components
All components in the input are propagated to the output. Only screen objects are
modified.

Example Visual Programs
SIMPLE/ScaleScreen.net

 See Also
Render, AutoCamera, Camera, Image

290 IBM Visualization Data Explorer: User’s Reference

 Select

 Modules

 Select

 Category
Structuring

 Function
Selects a member of a group or a list.

 Syntax
object = Select(input, which);

 Inputs
Name Type Default Description

input group, series,
value list,
string list

none the object from which one or
more members are to be
selected

which integer,
integer list,
string list

0 the member(s) to be selected

except flag 0 0: copy all listed members
1: copy all but listed members

 Outputs
Name Type Description

object object the selected member(s)

 Functional Details
input is a series or group from which items are to be selected.

which specifies the item(s) to be selected.

If input is:

� a series or group: the module selects items
– by name if which is a string or string list.
– by index in the group if which is an integer or integer list.

� a list: which must be an integer or integer list, and the module
selects the corresponding items.

If this parameter is not specified, the module selects the first (0th)
object.

Note: Members of a series can be selected only by ordinal
number, not by series position. For both groups and lists, counting
begins at 0 (zero).

except specifies whether which is to be interpreted as an inclusive or
exclusive selection list.

 Chapter 2. Functional Modules 291

 Select

Notes:

1. Since the components of fields are typically arrays (lists), you can select a
particular position as follows:

Use Extract to extract the “positions” component.

Use Select on that array, setting which to the appropriate value (e.g., 7 for
the eighth position).

You can also use the Select module to select individual frames from a data
series, passing the Sequencer output to which.

2. If you pass a series to Select, and that series has groups of fields as members,
the output of Select is one of the groups of fields. Selecting a single field from
one of these groups requires two calls to Select: the first to select the group of
fields, and the second to select the individual field.

3. If which is a string, Select finds the object with that name only if it lies at the
top hierarchical level of the input passed to Select.

 Components
All input components are propagated to the output.

Example Visual Programs
ConnectingScatteredPoints.net

GeneralImport1.net

GeneralImport2.net

PlotTwoLines.net

UsingTextAndTextGlyphs.net

 See Also
 Collect, CollectNamed, CollectSeries, List

292 IBM Visualization Data Explorer: User’s Reference

 Selector

 Modules

 Selector

 Category
Interactor

 Function
Generates a value and a string based on user input.

 Syntax
Available only through the user interface.

 Inputs
Name Type Default Description

stringdata string list or
group

no default specifies or derives a list of
potential output strings

valuelist integer or
string list or
value list

0-based list list of potential output values

cull flag 0 determines whether zero-length
strings are removed (1) or not
(0)

label string "Selector" global name applied to interactor
stand-ins

 Outputs
Name Type Description

value string or value value

name string string name

 Functional Details
This module allows the user to interactively select one item from a list. Through
inputs to the module (outputs from other tools or values set in its configuration
dialog box) the interactor can be “data driven.”

If the interactor is not data driven, its attributes (e.g., stringdata or valuelist) are
taken from its Set Attributes... dialog box (accessed from the Edit pull-down
menu in the Control Panel).

This interactor requires a list of strings and a list of values or strings that are then
paired up one-to-one and used as selectable outputs. The inputs to Selector are
used to generate both lists. If there are no inputs, the module uses the values in
its Set Attributes... dialog box.

stringdata controls the string values that appear as output in name. It is
required if the interactor is data driven.

If the parameter value is:

� a string list: the individual strings are used as potential outputs.

 Chapter 2. Functional Modules 293

 Selector

� a group: the names of the group members (or member1,
member2, ...) are used as possible output names.

� a series group: the names are “position = n,” (where n is the
series position of each series member).

In every case, the items in the resulting string list are displayed in
the list of selections in the corresponding Selector interactor.

valuelist is a list of potential output values.

If this parameter is a value or string list, these values are mapped
one-to-one onto the string list that results from stringdata input.

If the interactor is data-driven, the parameter value can also be a
single integer used to generate a list of integers beginning with that
one.

If the parameter is defaulted and the interactor is data-driven, the
value list is a list of integers starting at 0 (zero).

cull is specified only when the interactor is data-driven. It determines
whether or not empty strings are culled from the string list that
results from stringdata input. If set to 1, empty strings are
removed.

label is the global label of all instances of the corresponding interactor
stand-in. An interactor instance’s local label (set from the Control
Panel) overrides a global label. If not specified, the global label is
set by the user interface.

Example Visual Programs
Many example visual programs use the Selector interactor. Example programs that
use a data-driven Selector interactor are:

DataDrivenSelector.net

UsingAttributes.net

 See Also
 Integer, IntegerList, Scalar, ScalarList, Vector

294 IBM Visualization Data Explorer: User’s Reference

 SelectorList

 Modules

 SelectorList

 Category
Interactor

 Function
Generates a list of values and a strings based on user input.

 Syntax
Available only through the user interface.

 Inputs
Name Type Default Description

stringdata string list or
group

no default specifies or derives a list of
potential output strings

valuelist integer or
string list or
value list

0-based list list of potential output values

cull flag 0 determines whether zero-length
strings are removed (1) or not
(0)

label string "Selector" global name applied to interactor
stand-ins

 Outputs
Name Type Description

value string or value value

name string string name

 Functional Details
This module allows the user to interactively select zero, one, or more items from a
list. Through inputs to the module (outputs from other tools or values set in its
configuration dialog box) the interactor can be “data-driven.”

If the interactor is not data-driven, its attributes are taken from its Set
Attributes... dialog box (accessed from the Edit pull-down menu in the Control
Panel).

This interactor requires a list of strings and a list of values or strings that are then
paired up one-to-one and used as selectable outputs. The inputs to SelectorList
are used to generate both lists. If there are no inputs, the module uses the values
in its Set Attributes... dialog box.

stringdata controls the string values that appear as output in name. It is
required if the interactor is data-driven.

If the parameter value is:

� a string list: the individual strings are used as potential outputs.

 Chapter 2. Functional Modules 295

 SelectorList

� a group: the names of the group members (or member1,
member2, ...) are used as possible output names.

� a series group: the names are “position = n,” (where n is the
series position of each series member).

In every case, the items in the resulting string list are displayed in
the list of selections in the corresponding SelectorList interactor.

valuelist is a list of potential output values.

If this parameter is a value or string list, these values are mapped
one-to-one onto the string list that results from stringdata input.

If the interactor is data-driven, the parameter value can also be a
single integer used to generate a list of integers beginning with that
one.

If the parameter is defaulted and the interactor is data-driven, the
value list is a list of integers starting at 0 (zero).

cull is specified only when the interactor is data-driven. It determines
whether or not empty strings are culled from the string list that
results from stringdata input. If set to 1, empty strings are
removed.

label is the global label of all instances of the corresponding interactor
stand-in. An interactor instance’s local label (set from the Control
Panel) overrides a global label. If not specified, the global label is
set by the user interface.

Example Visual Program
InterfaceControl3.net

 See Also
 Integer, IntegerList, Scalar, ScalarList, Vector

296 IBM Visualization Data Explorer: User’s Reference

 Sequencer

 Modules

 Sequencer

 Category
Special

 Function
Generates a sequence of integers.

 Syntax
The sequencer is available in script mode and in the user interface. However, it
can be data driven only in the user interface (see Chapter 10, “Data Explorer
Scripting Language” on page 187 in IBM Visualization Data Explorer User’s Guide,
and the example later in this section.)

 Inputs
Name Type Default Description

min integer 1 minimum of integer sequence

max integer 100 maximum of integer sequence

delta integer 1 numerical interval between
successive integers in the
sequence

 Outputs
Name Type Description

frame integer frame number

 Functional Details
This module allows a user to “animate” a visualization. Through inputs to the
module (outputs from other tools or values set in its configuration dialog box) the
interactor can be “data driven.”

If the interactor is not data-driven, its attributes are taken from its Frame Control
dialog box (accessed from the ... button).

The configuration dialog box for Sequencer can be accessed by selecting the
Sequencer icon in the VPE and then choosing Configuration in the Edit menu.

min and max specify the minimum and maximum integer values (frame numbers)
for an “animation” sequence. By default, min = 1 and max = 100.

delta specifies the increment between integers in the output sequence. If
min and max are equal, delta is ignored. By default, delta = 1.

Note: If min is specified, and either min or max change, the output value (frame) is
set to the new min value and the Start and Stop values in the Frame Control dialog
box are set to the new minimum and maximum, respectively.

However, if min is not specified and max is and then changes on the next execution,
the output frame value becomes the current Start value as set in the Frame Control
dialog box.

 Chapter 2. Functional Modules 297

 Sequencer

Script Language Example
The following example uses the Sequencer in script mode to display a series of
isosurfaces. The input to the macro do_each_frame is the frame number, which is
converted into an isosurface value by multiplying it by 0.05. The initialization
values are set by @startframe, @endframe, and @nextframe. The sequence
command invokes the macro for each step of the sequence. Finally, the play
command starts the Sequencer running. For more information about using the
sequencer in script mode, see Chapter 10, “Data Explorer Scripting Language” on
page 187 in IBM Visualization Data Explorer User’s Guide.

macro do_each_frame(frame)

{

isovalue = frame\.ð5;

isosurface = Isosurface(data,isovalue);

 Display(isosurface,camera);

}

data = Import("/usr/lpp/dx/samples/data/cloudwater");

camera = AutoCamera(data);

@startframe = 1;

@endframe = 5;

@nextframe = @startframe;

sequence do_each_frame(@frame);

play;

Example Visual Programs
Many of the example visual programs use a sequencer, including:

ContoursAndCaption.net

GeneralImport1.net

MovingCamera.net

The following example visual program uses a data-driven Sequencer:

Imide_potential.net

298 IBM Visualization Data Explorer: User’s Reference

 SetGlobal

 Modules

 SetGlobal

 Category
Flow Control

 Function
Places an object in the cache.

 Syntax
SetGlobal(object, link);

 Inputs
Name Type Default Description

object object no default object to be cached

link string no default link to corresponding GetGlobal
module

 Functional Details
This module works with GetGlobal to place and retrieve objects from the cache:
SetGlobal places an object in the cache, where GetGlobal can retrieve it.
SetGlobal should always be used with GetGlobal, not with GetLocal.

Note: The corresponding GetGlobal module must be executed on the same
machine (i.e., it cannot be distributed to another machine). See “GetGlobal” on
page 149 and “GetLocal” on page 151 for a discussion of the differences between
the Global Get/Set pair and the Local Get/Set pair.

object is the object to be placed in the cache.

link specifies the GetGlobal module that corresponds to the SetGlobal
module. In the VPE, this link would be created by dragging an arc
from the link output of GetGlobal to the link input of SetGlobal.

A detailed description of the behavior and use of the GetLocal, GetGlobal,
SetLocal, and SetGlobal modules can be found in 4.6, “Preserving Explicit State”
on page 45 in IBM Visualization Data Explorer User’s Guide.

Example Visual Programs
SIMPLE/GetSet.net

 See Also
 GetGlobal, GetLocal, SetLocal

 Chapter 4, “Data Explorer Execution Model” on page 37 in IBM Visualization Data
Explorer User’s Guide.

 Chapter 2. Functional Modules 299

 SetLocal

 SetLocal

 Category
Flow Control

 Function
Places an object in the cache.

 Syntax
SetLocal(object, link);

 Inputs
Name Type Default Description

object object no default object to be cached

link string no default link to corresponding GetLocal
module

 Functional Details
This module works with GetLocal to place and retrieve objects from the cache:
SetLocal places an object in the cache, where GetLocal can retrieve it. SetLocal
should always be used with GetLocal, not with GetGlobal.

Note: The corresponding GetLocal module must be executed on the same
machine (i.e., it cannot be distributed to another machine). See “GetGlobal” on
page 149 and “GetLocal” on page 151 for a discussion of the differences between
the Global Get/Set pair and the Local Get/Set pair.

object is the object to be placed in the cache.

link specifies the GetLocal module that corresponds to the SetLocal
module. In the VPE, this link would be created by dragging an arc
from the link output of GetLocal to the link input of SetLocal.

A detailed description of the behavior and use of the GetLocal, GetGlobal,
SetLocal, and SetGlobal modules can be found in 4.6, “Preserving Explicit State”
on page 45 in IBM Visualization Data Explorer User’s Guide.

Example Visual Programs
Accumulate.net

Bounce.net

SimpleGetSetLoop.net

 See Also
 GetLocal, GetGlobal, SetGlobal

 Chapter 4, “Data Explorer Execution Model” on page 37 in IBM Visualization Data
Explorer User’s Guide.

300 IBM Visualization Data Explorer: User’s Reference

 Shade

 Modules

 Shade

 Category
Rendering

 Function
Specifies the shading attributes of an object.

 Syntax
output = Shade(input, shade, how, specular, shininess, diffuse,
 ambient);

 Inputs
Name Type Default Description

input object none object to be shaded

shade flag 1 0: object not shaded
1: object shaded

how string none (“smooth” or “faceted”)

specular scalar none specular coefficient
(standard = 0.5)

shininess integer none shininess exponent
(standard = 10)

diffuse scalar none diffuse coefficient
(standard = 0.7)

ambient scalar none ambient coefficient
(standard = 1.0)

 Outputs
Name Type Description

output field shaded object

 Functional Details
This module is applicable only to surface objects (i.e., objects with connections of
type “triangle” or “quad”).

input specifies the object whose shading attributes are to be modified.

shade turns shading on or off. By default, the module turns shading on.

how specifies whether the shading is to be smooth or faceted. If this
parameter is not set, and:

� if the input object is already shaded, the shading method is not
changed.

� if the object is not shaded, the choice between smooth and
faceted shading is determined by the dependency of the “data”
component, if it has a data dependency:

smooth shading is used for position-dependent data.

 Chapter 2. Functional Modules 301

 Shade

faceted shading is used for connection-dependent data.

� if no data are present, smooth shading is used.

An explicit specification of “smooth” or “faceted” shading will apply
to all objects. However, if a “normals” component of the requested
type (“dep” “positions” or “dep” “connections”) is already present,
the normals are not recomputed.

The next four parameters specify the particular shading attributes of the object. If
any of these parameters are not explicitly set, the corresponding attributes remain
unchanged.

specular specifies the amount of light reflected by the object (as from a very
smooth, highly reflective surface). The specified value must be
between 0 and 1. The default is 0.5.

shininess specifies how sharp the specular highlight is. The specified value
must be an integer. Larger numbers result in a smaller, sharper,
specular highlight. The default is 10.

diffuse specifies how much light is diffused by the object (as from a rough
non-reflective surface). The specified value must be between 0 and
1. The default is 1 (one).

ambient specifies how much light is reflected equally in all directions. The
specified value must be between 0 and 1.

Notes:

1. The Shade module will also check whether the orientation of the “connections”
component is consistent with the directions of the “normals”. If they are not
consistent, it will modify the directions of the normals.

2. Smooth shading is not supported for faces, loops, and edges data. However,
faces, loops, and edges can be converted to triangles using Refine, and can
then be smooth-shaded.

 Components
May add or modify the “normals” component. All other components are
unchanged.

Example Visual Programs
AlternateVisualizations.net

Imide_potential.net

UsingShade.net

 See Also
 Render, Display, Image

302 IBM Visualization Data Explorer: User’s Reference

 ShowBoundary

 Modules

 ShowBoundary

 Category
Realization

 Function
Shows the boundary of a field.

 Syntax
output = ShowBoundary(input, validity);

 Inputs
Name Type Default Description

input field none field whose boundary is to be
shown.

validity flag 0 0: create boundary of all data
1: create boundary of valid data
only

 Outputs
Name Type Description

output color field renderable boundary of the input field

 Functional Details
The ShowBoundary module creates a field containing only the exterior faces of the
input object.

input is the object whose boundary is to be “shown” by the module.

validity determines whether validity of data (as specified by “invalid position”
and “invalid connections” components) is to be used in constructing
the boundary. By default, such information is not used, and the
information is simply passed through to the output boundary.
Display, Image, or Render will not render any invalid faces. (See
“Invalid Positions and Invalid Connections Components” on page 23
in IBM Visualization Data Explorer User’s Guide for a discussion of
invalid data.)

Notes:

1. Any colors or data in the input object are passed through to output. A default
color is added if a “colors” component is not already present.

2. The boundaries of a volumetric field are a surface or a set of surfaces; the
boundary a 2-dimensional field is a line or a set of lines.

 Chapter 2. Functional Modules 303

 ShowBoundary

 Components
Creates new “positions,” “connections,” and “normals” components. All other
components are propagated to the output. If input does not have a “colors”
component, one is added. Adds a “normals” component if the input is a volumetric
field.

Example Visual Programs
InvalidData.net

Thunder_cellcentered.net

UsingCompute.net

SIMPLE/ShowBoundary.net

 See Also
 ShowBox, ShowConnections, ShowPositions

304 IBM Visualization Data Explorer: User’s Reference

 ShowBox

 Modules

 ShowBox

 Category
Realization

 Function
Draws the bounding box of a field.

 Syntax
box, center = ShowBox(input);

 Inputs
Name Type Default Description

input field none the field for which a bounding
box is to be shown

 Outputs
Name Type Description

box color field renderable bounding box of input field

center vector center of bounding box

 Functional Details
This module produces a set of lines representing the edges of the bounding box of
a specified input object. It also generates a 3-vector for the position of the center
of the bounding box.

input specifies the object for which ShowBox generates a bounding box.

Notes:

1. The module adds a default color to the output box.

2. Unlike ShowConnections, ShowBoundary, and ShowPositions, this module
does not pass the colors and data of the input through to the output.

3. Any invalid data in input is ignored in creating the bounding box. (See “Invalid
Positions and Invalid Connections Components” on page 23 in IBM
Visualization Data Explorer User’s Guide.)

 Components
Creates new “positions,” “connections,” and “colors” components.

Example Visual Programs
ContoursAndCaption.net

UsingSwitchAndRoute.net

SIMPLE/MapToPlane.net

 Chapter 2. Functional Modules 305

 ShowBox

 See Also
 ShowBoundary, ShowConnections, ShowPositions

306 IBM Visualization Data Explorer: User’s Reference

 ShowConnections

 Modules

 ShowConnections

 Category
Realization

 Function
Draws the connective elements of a field.

 Syntax
output = ShowConnections(input);

 Inputs
Name Type Default Description

input field none field whose connection elements
are to be shown.

 Outputs
Name Type Description

output color field renderable connections of input field

 Functional Details
This module creates a set of renderable lines representing the “connections”
component of a specified input.

input specifies the object whose connection elements are to be shown.

Notes:

1. If the input object lacks a “colors” component, the module adds a default color
to the output.

2. Position-dependent color and data components are passed to the output.
Connection-dependent color and data components are not passed to the
output, because their values along a connection line are ill defined. To make
the data or colors position-dependent, use the Post module.

 Components
Creates a new “connections” component and adds a “colors” component if the input
does not already have one. Connection-dependent components are not
propagated to the output; all other components are.

Example Visual Programs
SIMPLE/Refine.net

ConnectingScatteredPoints.net

ImportExternalFilter.net

PlotLine.net

Isolate.net

UsingStreakline.net

 Chapter 2. Functional Modules 307

 ShowConnections

 See Also
 Post, ShowBoundary, ShowBox, ShowPositions

308 IBM Visualization Data Explorer: User’s Reference

 ShowPositions

 Modules

 ShowPositions

 Category
Realization

 Function
Shows the positions of a field.

 Syntax
output = ShowPositions(input);

 Inputs
Name Type Default Description

input field none field whose positions are to be
shown

every scalar 1.0 factor used to reduce the
number of positions shown

 Outputs
Name Type Description

output color field renderable positions of input field

 Functional Details
This module creates an output field that shows the positions of a specified input.

input specifies the object whose positions are to be shown.

every determines the relative number of input positions shown in the
output. By default, all positions are shown.

The multiplicand used is the reciprocal of the parameter value (e.g.,
given a value of 2, the output shows half the positions in the input).

Notes:

1. If the input object lacks a “colors” component, the module adds a default color
to the output.

2. Position-dependent color and data components are passed to the output.

 Components
Adds a “colors” component if the input does not already have one. All input
components, except “connections,” are propagated to the output. Invalid positions
are not passed through to the output.

 Chapter 2. Functional Modules 309

 ShowPositions

Example Visual Programs
MovingCamera.net

UsingSwitchAndRoute.net

 See Also
 ShowBoundary, ShowBox, ShowConnections

310 IBM Visualization Data Explorer: User’s Reference

 SimplifySurface

 Modules

 SimplifySurface

 Category
Transformation

 Function
Simplifies a triangulated surface and resamples data attached to the surface.

 Syntax
simplified = SimplifySurface(original_surface, max_error, max_data_error,

volume, boundary, length, data, stats);

 Inputs
Name Type Default Description

original_surface field (none) triangulated surface

max_error scalar input
dependent

maximum positional error

max_data_error scalar input
dependent

maximum data error

volume flag 1 1: move vertices to preserve
volume
0: do not move vertices

boundary flag 0 1: simplify surface boundaries
0: do not simplify surface
boundaries

length flag 1 1: move vertices to preserve the
length of boundaries
0: do not move vertices

data flag 1 1: use data dependent on
“positions” to constrain
simplification
0: ignore data for simplification

stats flag 0 1: provide simple statistics.
0: do not provide statistics

 Outputs
Name Type Description

simplified field simplified triangulated surface

 Functional Details
SimplifySurface builds a simplified surface that is guaranteed to deviate from
original_surface by less than max_error. This means that each vertex of
simplified as well as each point inside a triangle of simplified is at a Euclidean
distance no further than max_error from original_surface. Similarly, each vertex
of original_surface as well as each point inside a triangle of original_surface is
at a distance no further than max_error from the simplified surface.

 Chapter 2. Functional Modules 311

 SimplifySurface

In addition, if a “data” component of original_surface is dependent on the
“positions” component and is not TYPE_STRING, SimplifySurface will perform a data
dependent simplification: SimplifySurface will resample “data” on the simplified
surface and guarantee that the maximum deviation between the original and
re-sampled data is less than max_error_data. For efficiency reasons, the
dimensionality of the “data” component is currently limited to 3: for instance, it will
work for RGB colors or for gradient values in 3-dimension. Note that data
dependent on connections will not constrain simplification.

Vertex normals for the simplified surface are automatically computed.

Components dependent on “positions” or “connections” of original_surface are
added to simplified and re-sampled. For components dependent on
“connections”, the triangle areas are used to weight the resampling.

The following components are not re-sampled: “positions”, “connections”, “invalid
positions”, “invalid connections” “normals”, “neighbors”, and “positional error”.

original_surface
must have triangular connections. original_surface is the field
that is being simplified.

max_error maximum distance (in the units of the “position” component)
between simplified and original_surface. The default value for
max_error is 1% of the diagonal of the bounding box of
original_surface. You may decide to set max_error to a lower or
higher value than the default.

max_data_error
maximum deviation between data attached to original_surface
vertices, and the resampling of that data on the simplified surface.
(Again the maximum deviation also holds for points inside triangles,
not just vertices).

The default value for the maximum error on the data is set to 10%
of the diagonal of the bounding box in data space. If the data is one
dimensional, the default error is (max_data-min_data)/10.

max_data_error is ignored if data = 0 or if the data are
connection-dependent.

volume specifies whether the volume enclosed by the surface should be
preserved or not. If set to 1, SimplifySurface will move the surface
vertices in order to preserve the volume while the number of
vertices is being reduced. In this case, the volume is preserved to
within floating point or higher accuracy. If set to 0, the surface
vertices will not be moved. The default is 1.

The volume is only truly defined for a surface that does not have a
boundary (closed surface). Setting volume to 1 on a surface with
boundary will have the effect of preventing shrinkage and producing
more regular triangles.

Note that if several surfaces share the same boundary, as when
Isosurface is used on partitioned data, the volume can still be
preserved with volume set to 1 if the boundary is left intact
(boundary set to 0).

312 IBM Visualization Data Explorer: User’s Reference

 SimplifySurface

 Modules

With surfaces that present sharp angles, such as CAD data, setting
volume to 1 might not work well. In general, we recommend setting
volume to zero when operating on CAD data.

boundary specifies whether the boundary of a surface should be simplified or
left intact. If set to 1, then the boundary is simplified while
respecting the same errors max_error and max_data_error. If set to
0, then the boundary is left intact. The default is 0. If
original_surface has no boundary, this option is ignored.

length if boundary set to 1, specifies whether the length of the simplified
boundary should be preserved. If set to 1, in a manner analogous to
volume preservation, SimplifySurface will move the boundary
vertices in order to preserve the boundary length while the number
of boundary vertices is being reduced. If set to 0, the boundary
vertices will not be moved. The default is 1. If boundary is set to 0
then the value of length is ignored.

data if set to 1, instructs SimplifySurface use max_data_error to constrain
simplification if data are dependent on “positions” and are not
TYPE_STRING, and if the dimensionality of such data is 3 or lower. If
set to 0, simplification will not be constrained by data. In any case,
SimplifySurface will resample data after simplification. The default
is 1.

stats if set to 1, instructs SimplifySurface to write simple statistics:
number of vertices and triangles in original_surface, number of
vertices and triangles in simplified, and percentage of original
numbers of vertices and triangles. This information will appear in
the Message window. If set to 0, SimplifySurface will not provide
statistics. The default is 0.

simplified simplified surface.

Generating surface levels of detail.
SimplifySurface adds a “positional error” component to the simplified surface.
“positional error” is a component dependent on “positions” that provides for each
vertex of simplified a positive number. This positive number, the error value,
represents the radius of a sphere centered on the vertex, that is guaranteed to
intersect the original surface. The union of such spheres represents the error
volume of the simplified surface, which is guaranteed to enclose the original
surface. Points inside triangles are assigned an error value that is interpolated from
the error values at the triangle vertices using barycentric coordinates.

Using the “positional error” component, a simplified surface can be re-simplified to
any max_error while still guaranteeing a bound with respect to the original surface.
This is useful for generating successive levels of detail.

If the same error bound is used, a marginal additional simplification can be
observed: the algorithm implements a greedy method, and does not guarantee to
find the minimum number of triangles that respects a given error bound.

The use of the “positional error” component by SimplifySurface is transparent to
you, but you may occasionally want to visualize the simplification error, using the
Mark module. An example is provided in SimplifySurface.net.

 Chapter 2. Functional Modules 313

 SimplifySurface

 Components
SimplifySurface adds a “positional error” component that is dependent on
“positions” (see “Generating surface levels of detail.” on page 313).

In general simplified has the same components as original_surface except for
“invalid positions”, “invalid connections”, “neighbors”, and components that are
TYPE_STRING.

Example Visual Programs
SimplifySurface.net

 See Also
Refine, Reduce, Isosurface, Map

314 IBM Visualization Data Explorer: User’s Reference

 Slab

 Modules

 Slab

 Category
Import and Export

 Function
Creates a “slab” of data.

 Syntax
output = Slab(input, dimension, position, thickness);

 Inputs
Name Type Default Description

input field none object to be “slabbed”

dimension integer or
string

0 spatial orientation of the slab

position integer or
integer list

all starting position(s)

thickness integer 0 or 1 thickness of slab (in number of
elements)

 Outputs
Name Type Description

output field or field series slabbed data

 Functional Details
This module creates a multidimensional object consisting of a selected subset of
input data.

data specifies the data field to be slabbed. This field must have regular
connections.

dimension specifies the dimension in which the slab should be oriented relative
to the input object (the output slab will have the same orientation).
The n dimensions of the object can be specified by number (from 0
to n − 1). The first three dimensions can also be specified as x, y,
and z, respectively.

The default for this parameter is dimension 0 (zero).

Notes:

1. The dimension number refers to the ordering of positions in the
“connections” component. Thus, x corresponds to 0 only if the
positions have been specified as x varies slowest.

2. Slab can also be used on deformed grids, in which case the
connections do not align with any particular axis.

3. Transposing the positions (i.e., with Transpose) does not
change the order in the “connections” component.

 Chapter 2. Functional Modules 315

 Slab

position specifies the position from which the slab is generated.

If the specified value is a single integer, the module creates a single
field, with the slab oriented in the specified dimension and
containing the number of volume elements specified by thickness
(see below).

If position is a list of integers, the module creates a series of
specified slabs, and the default value of thickness is 1 (one).

If this parameter is not specified, the output is a series of slabs
(thickness = 1) that begin at every grid position along dimension.

thickness specifies the thickness of the slab (in volume elements). A
specified value of 0 (the default when position is a single number)
will produce a 2-dimensional slice in a 3-dimensional object.

Notes:

1. This module performs no interpolation, and only data with regular connections
can be slabbed.

2. If the input object is already colored, the colors are passed through unaltered.

3. If the input object is a volume and the requested slab is much thinner than the
input object, the colors for volume rendering may be dim.

4. If the data are connection dependent, a request for a slab of thickness = 0 is
ill-defined and the module returns an error.

 Components
All input components are propagated to the output.

Example Visual Programs
Imide_potential.net

RubberTube.net

Streamline.net

SIMPLE/Slab.net

 See Also
 MapToPlane, Select, Slice

316 IBM Visualization Data Explorer: User’s Reference

 Slice

 Modules

 Slice

 Category
Import and Export

 Function
Slices a multidimensional object.

 Syntax
output = Slice(input, dimension, position);

 Inputs
Name Type Default Description

input field none object to be sliced

dimension integer or
string

0 dimension to be eliminated

position integer list all starting positions

 Outputs
Name Type Description

output field or field series sliced data

 Functional Details
This module creates one or more “slices” of data from a multidimensional object,
each slice containing a subset of input data. It differs from the Slab module in
reducing by one the dimensionality of the object passed to output.

input specifies the data field to be sliced. This field must have regular
connections.

dimension specifies the dimension to be eliminated. If input has n
dimensions, the output will have n − 1. These dimensions can be
specified by number (from 0 to n − 1). The first three can also be
specified as x, y, and z, respectively.

The default for this parameter is dimension 0 (zero).

Notes:

1. The dimension number refers to the ordering of positions in the
“connections” component. Thus, x corresponds to 0 only if the
positions have been specified as x varies slowest.

2. Slice can also be used on deformed grids, in which case the
connections do not align with any particular axis.

3. Transposing the positions (i.e., with Transpose) does not
change the order in the “connections” component.

position specifies the position from which the slice is generated.

If the specified value is a single value, the module creates a single
field sliced that position along the eliminated dimension.

 Chapter 2. Functional Modules 317

 Slice

If position is a list of integers, the module creates a field series,
sliced at each position in the list. The series position of each series
member is equal to the value of the origin of that slice along the
sliced axis.

If this parameter is not specified, the output is a series of slices that
begin at every grid position along dimension.

Notes:

1. This module produces 2-dimensional data from 3-dimensional data. To create
a 2-dimensional slice in 3-dimensional space, use Slab.

2. Slice performs no interpolation, and only data with regular connections can be
sliced.

3. If the data are connection dependent, slicing is ill-defined and the module
returns an error.

 Components
All input components are propagated to the output.

Example Visual Program
WarpingPositions.net

 See Also
 Select, Slab, Stack

318 IBM Visualization Data Explorer: User’s Reference

 Sort

 Modules

 Sort

 Category
Transformation

 Function
Sorts the values of a specified list or field in a specified order.

 Syntax
result = Sort(field, descending)

 Inputs
Name Type Default Description

field scalar list or
field

none object to be sorted

descending flag 0 0: sort in descending order
1: sort in ascending order

 Outputs
Name Type Description

result scalar list or field sorted object

 Functional Details
field specifies the field or list to be sorted.

If the parameter is a scalar list, its values must be scalars or
1-vectors. If the parameter is a field, the sorting is performed on
the “data” component; other components are reordered and
renumbered as appropriate.

descending specifies the order of sorting: descending (0) or ascending (1).

 Components
The “data” and data-dependent components are reordered according to their data
values. Similarly, components on which data depends are reordered. Components
that reference reordered components are renumbered.

Example Visual Program
Sort.net

 Chapter 2. Functional Modules 319

 Stack

 Stack

 Category
Import and Export

 Function
Stacks fields or series of fields.

 Syntax
output = Stack(input, dimension);

 Inputs
Name Type Default Description

input field, field
series, or
group

none data to be stacked

dimension integer or
string

0 dimension in which the data is to
be stacked

 Outputs
Name Type Description

output field stacked data

 Functional Details
This module stacks a series of n-dimensional fields to form a single
(n+1)-dimensional field. You can also use Stack to add a dimension to a single
field (e.g., “stack” it from 2 dimensions to 3 dimensions). Note that Stack does not
accept partitioned data as input.

input specifies the object(s) to be stacked. The field(s) must have regular
connections.
If the parameter specifies a series, the location of the stacked field
in the new dimension is equal to the series position of that field. If
the parameter specifies a group, then the location of each member
of the group in the new dimension will be 0, 1, If the parameter
specifies a field (rather than a field series), the n-dimensional data
is converted to (n+1)-dimensional data, with the value of the extra
dimension set to zero.
A dimension can be specified by number (from 0 to n − 1). The first
three can also be specified as x, y, and z, respectively. The default
value is dimension 0 (zero).

 Components
All input components are propagated to the output.

320 IBM Visualization Data Explorer: User’s Reference

 Stack

 Modules

Example Visual Program
ManipulateGroups.net

 See Also
 CollectSeries, Slice, Transpose

 Chapter 2. Functional Modules 321

 Statistics

 Statistics

 Category
Transformation

 Function
Computes statistical characteristics of a field or list.

 Syntax
mean, sd, var, min, max = Statistics(data);

 Inputs
Name Type Default Description

data field or value
list

none data set used in statistical
computations

 Outputs
Name Type Description

mean scalar the mean

sd scalar the standard deviation

var scalar the variance

min scalar minimum value

max scalar maximum value

 Functional Details
This module finds the mean, standard deviation, variance, minimum, and maximum
of the value list, or the “data” component if a field is input.

data specifies the field or list of values on which the module performs
statistical computations.

For vector fields, the computations are based on the magnitude of
the vector. For matrices, the computations are based on the
determinant of the matrix.

Example Visual Program
AlternateVisualizations.net

 See Also
 Compute, Histogram

322 IBM Visualization Data Explorer: User’s Reference

 Streakline

 Modules

 Streakline

 Category
Realization

 Function
Computes streaklines to represent the movement of particles through changing
vector fields.

 Syntax
line = Streakline(name, data, start, time, head, curl, flag, stepscale);

 Inputs
Name Type Default Description

name string or
object

no default name of streakline

data vector field or
vector field
series

none vector series time-step or vector
field series

start vector list or
geometric
field

center of the
boundary box
of the first
series
member

starting point(s)

time scalar list series start
time(s)

starting time(s)

head integer final series
frame number

series time-step at which the
streaklines end

frame integer current frame current frame

curl vector field or
vector field
series

no curl vorticity of vector field(s)

flag flag input
dependent

0: curl not used
1: curl used to generate twist of
streakline(s)

stepscale value 0.1 step length as a fraction of the
size of the connection element

 Outputs
Name Type Description

line field or group one or more streaklines

 Chapter 2. Functional Modules 323

 Streakline

 Functional Details
This module traces the path of a particle through a changing vector field in discrete
steps. The visual form of this trace is a streakline, which starts at a specified time
and continues until the particle it represents exits from the field or until the field
“expires.”

name is required only if more than one invocation of Streakline in the
same visual program uses the same start, time, head, curl, and
flag arguments with different vector fields (data).

The reason for this requirement is that, in order to function
efficiently in movie applications, Streakline saves intermediate
results from frame to frame. This information is stored internally in
association with a key. Each invocation of the Streakline module in
the same graph receives a unique name, which is constructed from
the name, start, time, head, curl, and flag arguments. Thus, if
more than one invocation of Streakline in the same graph uses the
same arguments, varying only the vector field, a unique name string
must be assigned to each.

If you have only one Streakline module or if any of the inputs to the
module other than data are different between the two modules, you
do not need to specify name.

data specifies a vector field or vector field series. Vector fields are
limited to n-D vectors defined in n space; for example, 2-D vectors
on a 2-D sheet or 3-D vectors defined in a 3-D volume.

The individual time-step vector fields are passed to Streakline as
data, either combined in a single series object or one at a time in
successive executions of the graph containing the Streakline
module, as fields. Times are associated with each vector field by
the “series position” attached to each member of the series group.
Vector values in between these times are interpolated linearly from
the prior and subsequent vector fields. The times associated with
each field should increase monotonically as they are encountered
by the Streakline module, either as the individual series members
are indexed or as the individual series members are encountered in
successive executions of the graph. Vector fields encountered out
of order are ignored.

If data is a single field rather than a series group, then it must have
a “series position” attribute for Streakline to accept it. This attribute
is attached when a series member is selected with the Select
module. The individual members of the series group can be
extracted using the Select module or by requesting a single
member of the series when using the Import module.

start specifies a set of points at which streaklines originate. It can be
either a list of positions or a geometric field (e.g., the output of a
Grid module).

time specifies a set of times at which streaklines begin to be traced. The
units of time correspond to the units of the vector field. That is, a
particle travelling at a unit velocity moves one unit of distance in
one unit of time.

324 IBM Visualization Data Explorer: User’s Reference

 Streakline

 Modules

Both time and start can contain single or multiple elements. If
either parameter contains a single element, that element is
associated with each element of the other list. If both parameters
contain multiple elements, they must contain the same number of
elements, which are then matched in pairs. This allows either a
single starting point to be associated with several different starting
times, several starting points to be associated with a single starting
time, or several starting points to be associated with individual
starting times. If no time parameter is given, the series position of
the first member of the vector field series (either the first series
member or the first individual vector field encountered) is used. If
no start parameter is given, the center point of the first member of
the vector field series is used.

head specifies an expiration time for streaklines that have not otherwise
terminated. The streakline points are computed iteratively, and the
spacing between the points depends on the element size of the
connections.

frame allows the Streakline module to incrementally generate streaklines
when the entire series is input as data. For example, you could
attach the Sequencer to frame, and as frame advanced, the
streaklines would grow longer.

flag specifies whether the normals of the streaklines produced rotate
according to the vorticity of the vector field or do not rotate at all.

curl specifies the curl of the vector field (see “DivCurl” on page 118).

If the vorticity of the vector field is supplied by this parameter, the
curl is interpolated from it. In that case, the field must correspond
to the vector field in type (either both must be a series or both must
be a single field) and they should correspond in time. If curl is
specified, the default value for the flag parameter is 1. If curl is
not specified, the vorticity can be computed within Streakline, but at
a considerable cost in time. In this case the default value for flag
is 0, and if you want Streakline to compute the curl of the field, you
must set flag to 1.

stepscale specifies the accuracy of the interpolation. Streakline traces the
path of a particle through the vector field in discrete steps. These
steps are determined by interpolating vectors from the prior and
subsequent vector fields at the geometric position of the current end
of the streakline, and then linearly interpolating between the results
to produce a vector for the current position and time. A segment is
then appended to the current streakline, which continues it in the
direction of the resulting vector.

The length of the new segment is determined by two factors. First,
the length of the projection of the segment along the edges of the
cells of the prior and subsequent vector fields in which the starting
point of the segment is found does not exceed a proportion
(specified by the stepscale parameter) of the length of the edge.
Second, if grid is irregular, the segment is truncated at the boundary
of the element in which it begins. This allows the segment length to
be determined anew for the next element.

 Chapter 2. Functional Modules 325

 Streakline

Thus the stepscale parameter offers the user control over the
accuracy of the streakline. If stepscale is a small value (perhaps in
the range of 0.01 to 0.05), the resulting streakline contains a
relatively large number of segments that closely trace small
variations in the vector field. If stepscale is assigned a large
number (0.5 to 1), the steps are larger and less accurate, but
require less execution time. Note, however, that since the step is
determined as a proportion of the size of the grid cell in which it is
contained, the segments are small in areas in which the grid
elements are small, and proportionally larger in areas in which the
grid elements are large.

Streaklines trace particles through time. Associated with the streakline is a “time”
component that indicates, for each position of the streakline, the time at which the
particle reached that position. The initial value in this component, therefore, is
equal to the starting time for that streak, which is by default the first series position,
or settable by the user using the time parameter. The final value in the time
component is equal to the time at which the particle exits from the vector field,
either geometrically or for one of the following reasons:

� It has reached the time associated with the final member of the vector field
series.

� It has reached the time associated with the current frame.

� It has reached the time associated with the series member indicated by the
head parameter.

The output streaklines also contain a “data” component that indicates the velocity of
the data field at each position along the streakline.

Note: Unlike other modules in the system, the Streakline module maintains
information about previous executions. If errors occur during the execution
of the visual program, it may be necessary to use the Reset Server option
to reinitialize the system.

 Components
Creates new “positions,” “connections,” “data,” “time,” and “colors” components. If
the flag argument is set, “normals” and “binormals” components are also created.

Example Visual Programs
UsingCompute3.net

UsingStreakline.net

 See Also
 DivCurl, Ribbon, Streamline, Tube

326 IBM Visualization Data Explorer: User’s Reference

 Streamline

 Modules

 Streamline

 Category
Realization

 Function
Computes streamlines to represent the movement of particles through static vector
fields.

 Syntax
line = Streamline(data, start, time, head, curl, flag, stepscale);

 Inputs
Name Type Default Description

data vector field none vector field

start vector list or
geometric
field

center of the
first series
member

starting point(s)

time scalar list series start
time(s)

starting time(s)

head integer final series
frame number

series time-step at which the
streamlines end

curl vector field no curl vorticity of vector field(s)

flag flag input
dependent

0: curl not used
1: curl used to generate twist of
streamline(s)

stepscale value 0.1 step length as a fraction of the
size of the connection element

 Outputs
Name Type Description

line field or group one or more streamlines

 Functional Details
This module traces the path of a particle through a static vector field in discrete
steps. The visual form of this trace is a streamline, which starts at a specified time
and continues until the particle it represents exits from the field or reaches a region
of zero velocity.

data specifies a vector field. Vector fields are limited to n-D vectors
defined in n space; for example, 2-D vectors on a 2-D sheet or 3-D
vectors defined in a 3-D volume.

start specifies a set of positions at which streamlines originate. It can be
either a list of positions or a geometric field (e.g., the output of a
Grid module or even an isosurface).

 Chapter 2. Functional Modules 327

 Streamline

time specifies a set of times at which streamlines begin to be traced.
The units of time correspond to the units of the vector field. That is,
a particle travelling at a unit velocity moves one unit of distance in
one unit of time.

Both time and start can contain single or multiple elements. If
either parameter contains a single element, that element is
associated with each element of the other list. If both parameters
contain multiple elements, they must contain the same number of
elements, which are then matched in pairs.

You can use the time parameter to start different streamlines at
different times. Note that for the static vector fields used by
Streamline, a particle at a given location will trace the same
streamline, regardless of what time it is started.

head specifies an expiration time for streamlines that have not otherwise
terminated. The streamline points are computed iteratively, and the
spacing between the points depends on the element size of the
connections and the stepscale. If this maximum is reached, a
warning is produced and the streamline is terminated. The
maximum number of streamline points is 25,000.

curl causes Streamline to produce normals and binormals components
that represent the vorticity of the vector field. “DivCurl” on
page 118). In that case, the default value for flag is 1. The
“normals” and “binormals” components of the resulting streamlines
rotate according to the vorticity of the vector field. This information
is either interpolated from the vector field passed in as the curl
parameter or is computed internally.

flag specifies whether or not the twist specified by curl is enabled. A
setting of 0 (zero) disables the twist.

However, if curl is not specified, the default value for flag is 0, and
no twist is produced. In that case you have the option of setting
flag to 1, which causes Streamline to compute the curl internally.

stepscale specifies the accuracy of the interpolation. Streamline traces the
path of a particle through the vector field in discrete steps. These
steps are determined by interpolating a vector from the vector field
at the current end of the streamline and appending a new segment
that extends the streamline in the direction of the vector.

The length of the new segment is determined by two factors. First,
the length of the projection of the segment along the edges of the
cells of the prior and subsequent vector fields in which the starting
point of the segment is found does not exceed a proportion
(specified by the stepscale parameter) of the length of the edge.
Second, if grid is irregular, the segment is truncated at the boundary
of the element in which it begins. This allows the segment length to
be determined anew for the next element.

Thus the stepscale parameter offers the user control over the
accuracy of the streamline. If stepscale is a small value (perhaps
in the range of 0.01 to 0.05), the resulting streamline contains a
relatively large number of segments that closely trace small
variations in the vector field. If stepscale is assigned a large
number (0.5 to 1), the steps are larger and less accurate, but

328 IBM Visualization Data Explorer: User’s Reference

 Streamline

 Modules

require less execution time. Note, however, that since the step is
determined as a proportion of the size of the grid cell in which it is
contained, the segments are small in areas in which the grid
elements are small, and proportionally larger in areas in which the
grid elements are large.

Streamlines trace particles through time. Associated with the streamline is a “time”
component that indicates, for each position of the streamline, the time at which the
particle reached that position. The initial value in this component, therefore, is
equal to the starting time for that stream, which is by default the first series
position, or settable by the user using the time parameter. The final value in the
time component is equal to (1) the time at which the particle exits from the vector
field or (2) the time specified by the head parameter.

The output streamlines also contain a “data” component that indicates the velocity
of the data field at each position in the streamline.

 Components
Creates new “positions,” “connections,” “data,” “time,” and “colors” components. If
the flag argument is set, “normals” and “binormals” components are also created.

Example Visual Programs
Interop.net

InvalidData.net

RubberTube.net

Streamline.net

ThunderStreamlines.net

 See Also
 DivCurl, Glyph, Ribbon, Streakline, Tube

 Chapter 2. Functional Modules 329

 String

 String

 Category
Interactor

 Function
Generates a string.

 Syntax
Available only through the user interface.

 Outputs
Name Type Description

output string interactor output

 Functional Details
The String interactor generates a string as output. For more information, see
“String Interactor” on page 144 in IBM Visualization Data Explorer User’s Guide.

Note: This interactor cannot be data driven.

Example Visual Program
AnnotationGlyphs.net

 See Also
 FileSelector, Integer, IntegerList, Scalar, ScalarList, StringList, Value,
 ValueList, Vector, VectorList

330 IBM Visualization Data Explorer: User’s Reference

 StringList

 Modules

 StringList

 Category
Interactor

 Function
Generates a string list.

 Syntax
Available only through the user interface.

 Outputs
Name Type Description

output string list interactor output

 Functional Details
The StringList interactor generates a string list as output. For more information,
see “List Interactors” on page 145 in IBM Visualization Data Explorer User’s Guide.

Note: This interactor cannot be data driven.

 See Also
 FileSelector, Integer, IntegerList, Scalar, ScalarList, String, Value,
 ValueList, Vector, VectorList

 Chapter 2. Functional Modules 331

 SuperviseState

 SuperviseState

 Category
Windows

 Function
Manages the object and/or camera associated with an image window created using
SuperviseWindow.

 Syntax
object, camera, where, events = SuperviseState(where,defaultCamera, resetCamera,

object, resetObject, size,
events, mode, args);

 Inputs
Name Type Default Description

where string (none) the window for which objects
and cameras are to be
manipulated

defaultCamera camera (none) initial or default camera

resetCamera flag 0 whether to reset camera to the
default

object object (none) initial or default object

resetObject flag 0 whether to reset object to the
default

size vector or
integer list

(none) size

events object (none) mouse or keyboard events from
SuperviseWindow

mode integer (none) specifies the mode, or which
UserInteractor to enable

args object (none) interactor arguments

 Outputs
Name Type Description

object object current object

camera camera current camera

where string input where

events string unhandled events

 Functional Details
Briefly, this module allows a user to specify the particular action that should be
taken on mouse or keyboard events in a window created using SuperviseWindow.
The SuperviseState module is expected to be used together with SuperviseWindow
and Display to create and display a window. These modules are used as an
alternative to the Image tool. See “SuperviseWindow” on page 336 for a more

332 IBM Visualization Data Explorer: User’s Reference

 SuperviseState

 Modules

complete discussion of the use of the Supervise modules and the benefits one gets
with respect to the simple use of the Image tool.

Actions are specified using user-supplied routines called UserInteractors. A single
UserInteractor is the set of actions which take place for any mouse or keyboard
event for a given mode. For example, a single mode may define different behaviors
for left, middle, and right mouse actions. An arbitrary number of different modes
can be defined, providing a limitless number of different user interactions with the
image. Note that this implies that different actions (for example zoom and translate)
can be implemented either as different modes using the same mouse button, as the
same mode with different mouse buttons, or of course, different modes and
different buttons.

where the window for which objects and cameras are to be manipulated.
This input should be supplied by the where output of
SuperviseWindow.

defaultCamera is the initial or default camera.

resetCamera indicates whether to reset camera to the default

object is the initial or default object

resetObject indicates whether to reset object to the default

size is the current size of the image, and should be supplied by the size
output of SuperviseWindow

events mouse or keyboard events. Should be supplied by the events
output of SuperviseWindow

mode specifies the mode, (which UserInteractor to enable). The set of
user-defined UserInteractors is created as a table of callbacks. The
mode value specifies which entry in that table is to be called.

args interactor arguments as required by a UserInteractor.

The following are output parameters:

object current object; should be passed to the object input of Display.

camera current camera; should be passed to the camera input of Display

where Window where parameter; should be passed to the where input of
Display.

events are unhandled events, that is any mouse or keyboard events that
have been masked off within the routine InitMode, described in
UserInteractors.

 UserInteractors
UserInteractors consist of the following routines, the contents of which must be
provided by the user. You specify the location of your custom interactor object files
using the DX_USER_INTERACTOR_FILE environment variable (see “Other Environment
Variables” on page 292 in IBM Visualization Data Explorer User’s Guide).

Note: Default user interactors to implement rotation, pan, and zoom functionality
are provided by Data Explorer if you do not provide your own custom interactors.
Rotation (mode 0) is the same as the standard left-button rotation interaction of the
Image tool. Pan (mode 1) operates differently than the Data Explorer pan mode of
the Image tool; you simply drag on the object to move it in the desired direction.

 Chapter 2. Functional Modules 333

 SuperviseState

Zoom (mode 2) operates as follows: drag upward to zoom in; drag downward to
zoom out.

void \InitMode(Object args, int width, int height, int \mask)
Given an object containing args (which come in as input to SuperviseState and
are up to the interactor builder to specify), and the current width and height of
the window, returns a handle that is passed into all the other UserInteractor
routines. This routine also sets the value of mask to reflect which events the
particular interactor is interested in (for example, only left or right buttons).
Once mask is set, only those events which have been specified as interesting to
the interactor will cause the interactor to be called. The set of possible masks
is:

 DXEVENT_LEFT

 DXEVENT_MIDDLE

 DXEVENT_RIGHT

 DXEVENT_KEYPRESS

void EndMode(void \handle)
Frees the space allocated in InitMode.

void SetCamera(void \handle, float \to, float \from, float \up, int
projection, float fov, float width)

Passes current camera info from Data Explorer into the interactor. The
interactor can extract whatever camera information it is interested in and put
into its private handle. Note that if the camera is going to be modified, this
handle must retain the entire camera state so that it can be passed back in
GetCamera().

void SetRenderable(void \handle, Object object)
Passes the current object into the interactor. If the interactor is going to change
the object, it must be retained in handle.

int GetCamera(void \handle, float \to, float \from, float \up, int
\projection, float \fov, float \width)

Passes updated camera information from the interactor back to Data Explorer.
If the interactor has not updated the camera information, return 0; otherwise
set ALL the inputs and return 1.

int GetRenderable(void \handle, Object \obj)
Passes updated object information from the interactor back to Data Explorer. If
the interactor has not updated the object, return 0, otherwise set obj to point
to the updated object and return 1.

void EventHandler(void \handle, DXEvent \event)
Event handler. Receives the event in \event where a DXEvent is of type:

typedef union

{

 DXAnyEvent any;

 DXMouseEvent mouse;

 DXKeyPressEvent keypress;

}

and where DXAnyEvent, DXMouseevent, and DXKeyPressEvent are of type:

334 IBM Visualization Data Explorer: User’s Reference

 SuperviseState

 Modules

typedef struct

{

 int event

} DXAnyEvent

typedef struct

{

 int event;

 int x;

 int y;

 int state;

} DXMouseEvent

typedef struct

{

 int event;

 int x;

 int y;

 int key;

} DXKeyPressEvent

event is one of DXEVENT_LEFT, DXEVENT_MIDDLE, DXEVENT_RIGHT, or
DXEVENT_KEYPRESS; x and y are the pixel location of the event; state is one of
BUTTON_DOWN, BUTTON_MOTION, or BUTTON_UP; and key is the key that was
pressed.

 Doing Picking
If you want to do picking in a window created by SuperviseWindow, simply pass the
events, object, and camera outputs of SuperviseState to the locations, object,
and camera inputs of Pick. Pick will pull out only the locations of button-down
events from events and use camera to do the picking.

Example Visual Programs
SIMPLE/Supervise.net

Image_wo_UI.net

IndependentlyArrange.net

InsetImage.net

Also see the demonstrations of custom interactors in
/usr/lpp/dx/samples/supervise.

 See Also
SuperviseWindow, Display, Image

 Chapter 2. Functional Modules 335

 SuperviseWindow

 SuperviseWindow

 Category
Windows

 Function
Creates a Display window for an image and captures mouse and keyboard events
in that window.

 Syntax
where, size, events = SuperviseWindow(name, display, size,

offset, parent, depth, visibility,
pick, sizeFlag, offsetFlag);

 Inputs
Name Type Default Description

name string (none) unique name for the window

display string “local host” display on which to create the
window

size integer vector [640,480] x,y size of the window

offset integer vector [0,0] offset of window in parent

parent string (root window) parent window

depth integer 8 depth of window

visibility integer 1 visibility of window

pick flag 0 whether to consider only
button-down events

sizeFlag flag 0 whether to force the size of an
already existing window

offsetFlag flag 0 whether to force the offset of an
already existing window

 Outputs
Name Type Description

where string where parameter for window

size integer vector or
integer list

window size

events object mouse or keyboard events

 Functional Details
SuperviseWindow, along with the associated module SuperviseState, provides the
user with direct control over the effect of mouse and keyboard events in a window
containing an image. SuperviseWindow and SuperviseState are used together with
the Display tool, as an alternative to the Image tool.

336 IBM Visualization Data Explorer: User’s Reference

 SuperviseWindow

 Modules

When you include the Image tool in a visual program, mouse and keyboard events
are interpreted in a particular way as described in 6.1, “Using the Image Window”
on page 74 in IBM Visualization Data Explorer User’s Guide. In contrast, when the
Supervise modules and the Display tool are used in a visual program, you are able
to specify how a particular mouse or keyboard event should affect either the object
being viewed or the camera used to view it. For example, you could specify that
right-mouse drags in a horizontal direction should zoom in on an object, while
right-mouse drags in a vertical direction should zoom out.

Not only does this allow you to specify the particular action that should take place
given events in the display window, but it also allows your interaction with the
image to be separated completely from the Data Explorer user interface. For
example, a completely custom user interface could be created with a commercial
GUI builder, bypassing the Data Explorer user interface entirely, but still allowing
user-interaction with the image.

In order to specify custom interaction modes in a program, it is necessary for you to
provide routines which indicate what action is to be taken for a given event. An
action can affect either the object (for example rotating it or coloring it red), or the
camera (for example zooming in), or both. These sets of user-provided routines are
called UserInteractors. UserInteractors let you specify your own direct interactors by
specifying a table of callbacks, each implementing a custom interactor.

To start Data Explorer using custom UserInteractors, it is necessary to identify the
user-written UserInteractor routines to the Data Explorer executive. This is done by
setting the environment variable DX_USER_INTERACTOR_FILE before starting Data
Explorer. (You can also load UserInteractors after starting Data Explorer by using
the Executive module (“Executive” on page 126 in IBM Visualization Data Explorer
User’s Reference)).

If you do not set the DX_USER_INTERACTOR_FILE environment variable, a set of
default interactors are provided automatically by Data Explorer. These interactors
provide Rotate, Pan, and Zoom functions.

See “SuperviseState” on page 332 for more detailed information on how to specify
UserInteractors. SuperviseWindow and SuperviseState should not be used in
-image mode of Data Explorer. If used in -image mode, they will compete for
ownership of the Image window with the User Interface. Use -edit or -menubar
mode instead.

name is a unique name for the window.

display is the display on which to create the window and defaults to “local
host”.

size is the x,y size of the window, and defaults to 640x480. It can be
specified either as an integer vector or as an integer list.

offset is the offset of the window in the parent window. By default, offset
is [0,0]. It can be specified either as an integer vector or as an
integer list.

parent is the parent window “where” parameter; parent defaults to the root
window, but can also be an already created window if nested
windows are desired.

depth is the depth (in bits) of the window; depth defaults to 8.

 Chapter 2. Functional Modules 337

 SuperviseWindow

visibility indicates the visibility of the window:

0 window is closed
1 window is open
2 window is open and always on top

pick indicates whether only button-down events should be considered.
This is useful if the user wants to implement picking in the Display
window.

sizeFlag indicates whether to force the size of an already existing window.
The default is 0 (false).

offsetFlag indicates whether to force the offset of an already existing window.
The default is 0 (false).

where identifies the window. This output must be connected to the where
parameter of the Display tool. It would also be used, for example, if
nested windows are desired using a SuperviseWindow module with
the parent parameter set to something other than the root window.

size is the current size of the window, and may differ from the size input
if you resize the window.

events encodes mouse or keyboard events. It is an array of integer of
integer 4-vectors, where the four integers represent the following:

 � event
 � x
 � y
� state or keypress, depending on event

event is one of DXEVENT_LEFT, DXEVENT_MIDDLE, DXEVENT_RIGHT, or
DXEVENT_KEYPRESS. x and y are the pixel locations of the event. For
event = DXEVENT_LEFT, DXEVENT_MIDDLE, DXEVENT_RIGHT, the final
integer is “state”, which is one of BUTTON_UP, BUTTON_MOTION, or
BUTTON_DOWN. For event = DXEVENT_KEYPRESS, the final integer is
“keypress” which is the character which was pressed. Note that

#define DXEVENT_LEFT ðxð1

#define DXEVENT_MIDDLE ðxð2

#define DXEVENT_RIGHT ðxð4

#define DXEVENT_KEYPRESS ðxð8

#define BUTTON_UP 1

#define BUTTON_DOWN 2

#define BUTTON_MOTION 3

For operations other than picking, the user simply passes events to
the events input of SuperviseState, which interprets the mouse or
keyboard events and calls the appropriate user routines. For
picking, see “Doing Picking” on page 335.

Example Visual Programs
SIMPLE/Supervise.net

Image_wo_UI.net

IndependentlyArrange.net

InsetImage.net

Also see the demonstrations of custom interactors in
/usr/lpp/dx/samples/supervise.

338 IBM Visualization Data Explorer: User’s Reference

 SuperviseWindow

 Modules

 See Also
SuperviseState, Display, Image

 Chapter 2. Functional Modules 339

 Switch

 Switch

 Category
Flow Control

 Function
Selects one input from a list.

 Syntax
output = Switch(selector, input, ...);

 Inputs
Name Type Default Description

selector integer 0 object to be selected

input value list,
string list, or
object

no default selectable object

... more objects to be switched

 Outputs
Name Type Description

output object the object switched

 Functional Details
This module selects a specified object from input and passes it through to output.

selector specifies which of the n input objects are to be passed to output. If
the specified value is 1, the first input object (the second input to
the module itself) is passed through; if the specified value is 2, the
second input object (the third input to the module) is passed
through; and so on.

If the specified value is ≤ 0 or larger than n, output is NULL.

input specifies an input that may or may not be passed to output.

A single Switch module can accept a maximum of 21 input objects. In the user
interface, the default number of enabled tabs is two. (Tabs can be added to the
module icon and removed with the appropriate ...Input Tab options in the Edit
pull-down menu of the VPE.)

Note: In the user interface you may find it helpful to use the first output of the
Selector interactor as the first input (selector) to Switch. See “Selector and
SelectorList Interactors” on page 146 in IBM Visualization Data Explorer User’s
Guide for more information.

340 IBM Visualization Data Explorer: User’s Reference

 Switch

 Modules

 Components
All input components are propagated to the output.

Example Visual Programs
AlternateVisualizations.net

ConnectingScatteredPoints.net

UsingSwitchAndRoute.net

SIMPLE/Switch.net

 See Also
 Collect, Route

 Chapter 4, “Data Explorer Execution Model” on page 37 in IBM Visualization Data
Explorer User’s Guide.

 Chapter 2. Functional Modules 341

 System

 System

 Category
Debugging

 Function
Executes a system function.

 Syntax
System(string);

 Inputs
Name Type Default Description

string string none shell command to be executed

 Functional Details
The System module uses the C library system() function to execute operating
system commands.

If the characters %, \, or " occur in the command string, they must be escaped: the
percent sign must be preceded by another percent sign; backslashes and double
quotes must be preceded by a backslash.

Script Language Example
This example creates a sequence of captioned images using different isosurface
values. The Format module creates a different image file name for each image.
The System module executes the compress function to minimize the amount of disk
space used.

electrondensity = Import("/usr/lpp/dx/samples/data/watermolecule");

electrondensity = Partition(electrondensity);

camera = AutoCamera(electrondensity,resolution=3ðð,aspect=1,width=2.5);

macro makeiso(isoval)

{

isosurface = Isosurface(electrondensity, isoval);

caption = Format("isoval = %g", isoval);

caption = Caption(caption);

imagename = Format("iso%4.2f.rgb", isoval);

collected = Collect(caption, isosurface);

image = Render(collected, camera);

 Display(image);

 WriteImage(image, imagename);

command = Format("compress %s", imagename);

 System(command);

}

makeiso(ð.1);

makeiso(ð.2);

makeiso(ð.3);

makeiso(ð.33);

makeiso(ð.36);

makeiso(ð.39);

342 IBM Visualization Data Explorer: User’s Reference

 Text

 Modules

 Text

 Category
Annotation

 Function
Displays text.

 Syntax
text = Text(string, position, height, font, direction, up);

 Inputs
Name Type Default Description

string string or field none text to be displayed

position vector [0 0 0] placement of displayed text

height scalar 1 height of the text (in world
coordinates)

font string "variable" text font

direction vector [1 0 0] orientation of the baseline

up vector perpendicular
to baseline

orientation of vertical strokes of
text font

 Outputs
Name Type Description

text color field renderable string object

 Functional Details
This module produces text that is displayed in space.

string specifies the text to be displayed. If the parameter value is a string,
that string is displayed. If the parameter value is a field, its “data”
component must be TYPE_STRING. The data may be position or
connection dependent:

� position dependent: each string in the “data” component is
displayed at its corresponding position.

� connection dependent: each string is displayed at the center of
its corresponding connection element.

position specifies in world units the placement of the displayed text. It is
used only when string is not a field.

height specifies the height of the text, in world units.

font specifies the font used for displayed text. You can specify any of
the defined fonts supplied with Data Explorer. These include a
variable-width font (“variable,” the default) and a fixed-width font
(“fixed”):

 Chapter 2. Functional Modules 343

 Text

area gothicit_t pitman roman_ext

cyril_d greek_d roman_d script_d

fixed greek_s roman_dser script_s

gothiceng_t italic_d roman_s variable

gothicger_t italic_t roman_tser

For more information, see Appendix E, “Data Explorer Fonts” on
page 307 in IBM Visualization Data Explorer User’s Guide.

direction specifies the orientation of the baseline (see Note in next
description). For example, a value of 10 for this parameter
specifies that the text is aligned with the x-axis.

up specifies the orientation of the vertical strokes of the font used for
the displayed text.

Note: For string data in a field, the orientation of baseline and text
can specified by using “tangents” and “binormals” components. In
that way, each string can be oriented individually. These
components should have the same dependency as “data” The
“tangents” component corresponds to direction and “binormals” to
up.

The parameter specifications will override those of the field
components.

 Components
Creates new “positions,” “connections,” and “colors” components.

Example Visual Program
UsingTextAndTextGlyphs.net

 See Also
 Caption, Color, Format

344 IBM Visualization Data Explorer: User’s Reference

 Toggle

 Modules

 Toggle

 Category
Interactor

 Function
Selects between two possible outputs.

 Syntax
Available only through the user interface.

 Inputs
Name Type Default Description

setval value, string 1 output value when set

unsetval value, string 0 output value when set

label string no default interactor label

 Outputs
Name Type Description

output value, string selected toggle value

 Functional Details
This interactor allows the user to interactively choose between two different outputs.
Through inputs to the module (outputs from other tools or values set in its
configuration dialog box) the interactor can be “data driven.”

If the interactor is not data driven, its attributes (i.e., the two possible output values)
are taken from its Set Attributes... dialog box (accessed from the Edit pull-down
menu in the Control Panel).

Note: The module’s control panel is invoked by double-clicking on its icon in the
VPE window. Its configuration dialog box is accessed from the Edit pull-down
menu in the same window.

setval is the value put out when the toggle is set.

unsetval is the value put out when the toggle is not set.

label is the global label of all instances of the corresponding interactor
stand-in. An interactors instance’s local label (set from the Control
Panel) overrides a global label. If not specified, the global label is
set by the user interface.

Example Visual Programs
UsingSwitchAndRoute.net

 Chapter 2. Functional Modules 345

 Toggle

 See Also
 Selector

346 IBM Visualization Data Explorer: User’s Reference

 Trace

 Modules

 Trace

 Category
Debugging

 Function
Enable or disables tracing options.

 Syntax
Trace(what, how);

 Inputs
Name Type Default Description

what string none the object to be traced

how integer 1 0: set tracing off
1: set tracing on

 Functional Details
what is (1) a keyword specifying the object to be traced or (2) a set of

letters specifying a group of debug message classes, as used by
the DXEnableDebug() library function (see IBM Visualization Data
Explorer Programmer’s Reference).

At present, the only keyword value allowed for this parameter is
"time": Trace("time", 1); will begin the trace, and
Trace("time", ð); will print a record of time use since the tracing
was started. The output appears in the Message window.
If what is a string of lowercase letters other than time, the module
calls the DXEnableDebug library function. (The uppercase letters
A–Z and the numbers 0–9 are reserved for system use).

how specifies whether the trace option is activated or not.

Note: If the executive is started with the flag -timing on, the command
Trace("time", ð) causes all module entry and exit times to be printed. In the VPE
window, this command can be enabled using the Debug Tracing button in the
Commands menu of the Message window (see 8.2, “Using the Message Window” on
page 174 in IBM Visualization Data Explorer User’s Guide).

Script Language Example
In this example, the module traces the use of time by Isosurface.

electrondensity = Import("/usr/lpp/dx/samples/data/watermolecule");

electrondensity = Partition(electrondensity);

camera = AutoCamera(electrondensity, width=5);

Trace("time", 1);

isosurface = Isosurface(electrondensity, ð.3);

Trace("time", ð);

Display(isosurface, \camera);

 Chapter 2. Functional Modules 347

 Trace

 See Also
 Usage

348 IBM Visualization Data Explorer: User’s Reference

 Transform

 Modules

 Transform

 Category
Rendering

 Function
Performs a generalized transform of an object.

 Syntax
output = Transform(input, transform);

 Inputs
Name Type Default Description

input object none object to be transformed

transform tensor none 3×3 or 3×4 transformation matrix

 Outputs
Name Type Description

output object object marked for transformation

 Functional Details
This module prepares a specified object for being moved, rotated, and resized. A
Transform object containing the specified transformation matrix is inserted at the
root of the object. This transform is applied during rendering.

The module is more primitive than Translate, Rotate, and Scale, but it allows direct
entry into a 3×3 or 3×4 matrix (for combining several transformations or for a skew
transform).

Each [x y z] point in the object is transformed to the new point [x′ y′ z′] by:

x′ y′ z′ =

x y z

a b c
d e f
g h i

+

j k l

Nine numbers are interpreted as a to i with no translation; twelve numbers are a to
l. No translation occurs for the default value of:

1 0 0
0 1 0
0 0 1

+

0 0 0

 Components
All input components are propagated to the output.

 Chapter 2. Functional Modules 349

 Transform

 See Also
 Rotate, Scale, Translate

350 IBM Visualization Data Explorer: User’s Reference

 Translate

 Modules

 Translate

 Category
Rendering

 Function
Translates an object.

 Syntax
output = Translate(input, translation);

 Inputs
Name Type Default Description

input object none object to translate

translation vector [0 0 0] amount of translation along x, y,
and z axes

 Outputs
Name Type Description

output object object marked to be translated

 Functional Details
This module prepares a specified object for being moved (translated) a specified
amount along the x, y, and z axes.

Note: A Transform object containing the specified transformation matrix is inserted
at the root of the object. This transform is applied during rendering.

input specifies the object to be translated.

translation is the translation vector. No translation occurs for the default value
of [0 0 0]. A specification of [0 1 0] (to take one example) will move
the specified object one unit in the y-direction.

 Components
All input components are propagated to the output.

Example Visual Program
Imide_potential.net

 See Also
 Rotate, Scale

 Chapter 2. Functional Modules 351

 Transmitter

 Transmitter

 Category
Special

 Function
Transmits an object to a Receiver.

 Syntax
Available only through the user interface.

 Inputs
Name Type Default Description

object object none object transmitted

 Functional Details
To maintain the modularity and readability of large programs, Data Explorer
provides two tools that allow connections between input and output tabs of
separate modules without the use of a visible connecting line. These tools,
Transmitter and Receiver, allow you to separate visual programs into logical blocks.
For example, the output of several logical blocks can be transmitted to another
block that receives them, collects them, and produces an image.

Receivers and Transmitters can also be used to communicate information between
pages in the Visual Program Editor (see “Creating pages in the VPE” on page 115
in IBM Visualization Data Explorer User’s Guide). Pages are a valuable way of
structuring complex visual programs into logical blocks.

Note: Macros provide another way of structuring visual programs in logical blocks
(see 7.2, “Creating and Using Macros” on page 149 in IBM Visualization Data
Explorer User’s Guide).

To remotely connect input and output tabs:

1. Select a Transmitter tool (in the Special category in the tool palette) and place
it near the output tab of the module that is to be “connected.”

2. Connect the module’s output tab to the Transmitter’s input tab.

3. Select a Receiver tool (also in the Special category), and place it near the input
tab of the other module that is to be “connected.”

4. Connect the Receiver’s output tab to the second module’s input tab.

The Transmitter and Receiver are now connected.

The Receiver automatically assumes the same name as the Transmitter. More
than one Receiver can be connected to a single Transmitter and they assume the
same name until a new Transmitter is placed on the VPE canvas.

352 IBM Visualization Data Explorer: User’s Reference

 Transmitter

 Modules

Notes:

1. To change the name of a Transmitter and Receiver, use the Notation field of
the appropriate configuration dialog box (see in “Entering Values in a
Configuration Dialog Box” on page 107 in IBM Visualization Data Explorer
User’s Guide). Changing the name of a Transmitter changes the name of all
the Receivers connected to it. Changing the name of a Receiver affects only
that receiver.

2. For more information see “Using Transmitters and Receivers” on page 106 in
IBM Visualization Data Explorer User’s Guide.

Example Visual Programs
Receivers and transmitters are used by many of the example visual programs,
including:

AlternateVisualizations.net

Imide_potential.net

 See Also
 Receiver

 Chapter 2. Functional Modules 353

 Transpose

 Transpose

 Category
Import and Export

 Function
Performs a generalized transpose.

 Syntax
output = Transpose(input, dimensions);

 Inputs
Name Type Default Description

input field none object to be transposed

dimensions integer list,
string list

no
transposition

new coordinate list

 Outputs
Name Type Description

output field transposed object

 Functional Details
This module rearranges the dimensions of a specified input field.

input specifies the field to be transposed.
dimensions specifies the list of transposed coordinates. The n dimensions of

the object can be specified by number (from 0 to n − 1). The first
three dimensions can also be specified as x, y, and z, respectively.

The output also has n dimensions, and the ith output dimension is the same as
input’s dimensions [i]th input dimension.

This module transposes only the “positions” component, leaving other components
unaffected. For example, if the “data” component represents a velocity vector, the
components of the vector continue to be specified in the original coordinate system.
To rearrange the “data” component, use Compute. (If the output of Transpose is
later used as input to Slab, Slice, or Stack, the dimensions parameter must be
specified as in the original data before they were transposed.)

 Components
All input components are propagated to the output.

Example Visual Program
GeneralImport2.net

354 IBM Visualization Data Explorer: User’s Reference

 Transpose

 Modules

 See Also
 Compute, Slice

 Chapter 2. Functional Modules 355

 Tube

 Tube

 Category
Annotation

 Function
Changes a specified line into a tube.

 Syntax
tube = Tube(line, diameter, ngon, style);

 Inputs
Name Type Default Description

line field none line to be drawn as a tube

diameter scalar input
dependent

tube diameter

ngon integer 8 number of sides to the tube

style string "sphere" style of tube caps

 Outputs
Name Type Description

tube field a renderable tube

 Functional Details
This module is intended for use with any module that creates lines (e.g.,
Streamline).

line specifies the line that is to be changed into a tube. If a “normals”
component is present (as would occur if the input field curl were
used with Streamline or if the flag parameter is set in Streamline),
the tube shows a corresponding twist. To show the twist most
effectively, use the Ribbon module. Excessive amounts of twist can
produce a pinching effect.

diameter specifies the tube diameter in the same units as those of the
original space. If this parameter is not specified, the module
provides an appropriate value (1/50 of the diagonal of the boundary
box of line. This value is attached to the output tube as an
attribute called “Tube diameter,” which can be extracted with the
Attribute module.

ngon specifies the number of sides of the cross-sectional polygon of the
tube.

style in the current version of Data Explorer has no effect.

356 IBM Visualization Data Explorer: User’s Reference

 Tube

 Modules

 Components
Creates new “positions,” “connections,” and “normals” components. All other
components are propagated to the output.

Example Visual Programs
Imide_potential.net

Interop.net

PlotLine2.net

RubberTube.net

 See Also
 FaceNormals, Ribbon, Streakline, Streamline

 Chapter 2. Functional Modules 357

 Unmark

 Unmark

 Category
Structuring

 Function
Unmarks a marked component.

 Syntax
output = Unmark(input, name);

 Inputs
Name Type Default Description

input field none field with a marked component

name string input
dependent

the component to be unmarked

 Outputs
Name Type Description

output field the field with the named component not
marked

 Functional Details
This module undoes the action of the Mark module by creating an output field with
the “data” component of the input field returned to the name component. If a
“saved data” component exists, it is copied into the “data” component.

If the name parameter is not specified, the module copies the “data” component into
the component originally marked with the Mark module (that component name is
carried as a “marked component” attribute on input). Specifying the parameter
explicitly overrides this default behavior.

 Components
Copies the “data” component into the name component, and the “saved data”
component (if it exists) into the “data” component. All other input components are
propagated to the output.

Example Visual Programs
MakeLineMacro.net

PlotLine.net

PlotTwoLines.net

Sealevel.net

WarpingPositions.net

SIMPLE/MarkUnmark.net

358 IBM Visualization Data Explorer: User’s Reference

 Unmark

 Modules

 See Also
 Compute, Mark, Rename

 Chapter 2. Functional Modules 359

 UpdateCamera

 UpdateCamera

 Category
Rendering

 Function
Alters an existing camera.

 Syntax
camera = UpdateCamera(camera, to, from, width, resolution, aspect, up,

perspective, angle, background);

 Inputs
Name Type Default Description

camera camera none camera to be altered

to vector or
object

[0 0 0] look-to point

from vector or
object

[0 0 1] position of camera

width scalar or
object

100 width of field of view (for
orthographic projection)

resolution integer 640 horizontal resolution of image (in
pixels)

aspect scalar 0.75 height/width

up vector [0 1 0] up direction

perspective flag 0 0: orthographic projection
1: perspective projection

angle scalar 30.0 view angle (in degrees) (for
perspective projection)

background vector or
string

"black" image background color

 Outputs
Name Type Description

camera camera altered camera

 Functional Details
The altered camera produced by this module is identical to the input camera except
for the specified camera parameters (to, from, etc.). For a description of these
parameters, see “Camera” on page 49.

360 IBM Visualization Data Explorer: User’s Reference

 UpdateCamera

 Modules

 See Also
 AutoCamera, Camera, Color, Direction, Render

 Chapter 2. Functional Modules 361

 Usage

 Usage

 Category
Debugging

 Function
Prints information about current use of resources.

 Syntax
Usage(what, how);

 Inputs
Name Type Default Description

what string none the string to be printed

how integer 0 level of detail

 Functional Details
The output of this module appears in the Message window of the user interface.
Since, the module traverses the entire memory, it can be used to check for
corruption of the memory area.

what specifies what resource information is to be printed. Currently, the
only allowed value for this parameter is “memory.”

how specifies the level of detail of the printout.

ð Prints out a summary of the total current use of memory. A
typical printout might look like:

ð: 5872ð256 bytes total : 1379ðð8 in use, 57341248 free

1 Prints out a summary of current use of memory, both in small
and in large arenas. A typical printout might look like:

ð: small: 41943ð4 = hdr 16472 + used 486864 +

free 392ð + pool 3687ð48 (limit 41943ð4)

ð: large: 2ð97152 = hdr 16472 + used 494656 +

free 297ð4 + pool 155812ð (limit 54525952)

where

small is the total number of bytes currently managed by the
memory manager for the small arena.

large is the total number of bytes currently managed by the
memory manager for the large arena.

hdr is the amount of memory space used by internal data
structures.

used is the amount of memory space allocated for use.

free is the amount of memory previously used and available
for reuse.

362 IBM Visualization Data Explorer: User’s Reference

 Usage

 Modules

pool is the amount of memory space allocated to Data
Explorer but not yet used.

limit is the largest amount of memory that can be managed
by the memory manager.

2 lists the number of blocks on each free list

3 lists the number of blocks on each free list plus the actual
blocks on each free list

4 lists addresses of all allocated blocks (warning: very long)

5 lists addresses of all allocated and all freed blocks (warning:
very long)

Note: You can easily specify Usage(“memory”, 0) by using the Show Memory
Use button in the Commands menu of the Message window. The information
provided by this module applies to memory use at the time of execution and should
be interpreted with that restriction in mind. See “DXPrintAlloc” on page 317 in IBM
Visualization Data Explorer Programmer’s Reference for more information.

Script Language Example
This example shows the use of memory before and after the Isosurface module is
printed. (For this example, Data Explorer should be started with the -readahead
off option.)

electrondensity = Import("/usr/lpp/dx/samples/data/watermolecule");

camera = AutoCamera(electrondensity,width=5);

Usage("memory", 1);

isosurface = Isosurface(electrondensity,ð.3);

Usage("memory", 1);

Display(isosurface,camera);

 See Also
 Trace

 Chapter 2. Functional Modules 363

 Value

 Value

 Category
Interactor

 Function
Generates a value.

 Syntax
Available only through the user interface.

 Outputs
Name Type Description

output value interactor output

 Functional Details
This interactor generates a value (i.e. an integer, scalar, vector, or tensor) as
output. For information on its use, see “Value Interactor” on page 144 in IBM
Visualization Data Explorer User’s Guide.

Note: The Value interactor cannot be data driven.

 See Also
 FileSelector, Integer, IntegerList, Scalar, ScalarList, String, StringList,
 ValueList, Vector, VectorList

364 IBM Visualization Data Explorer: User’s Reference

 ValueList

 Modules

 ValueList

 Category
Interactor

 Function
Generates a value list.

 Syntax
Available only through the user interface.

 Outputs
Name Type Description

output value list interactor output

 Functional Details
The ValueList interactor generates a list of values (i.e., a list of integers scalars,
vectors, or tensors) as output. For more information on its use, see “List
Interactors” on page 145 in IBM Visualization Data Explorer User’s Guide.

Note: The ValueList interactor cannot be data driven.

 See Also
 FileSelector, Integer, IntegerList, Scalar, ScalarList, String, StringList,
 Value, Vector, VectorList

 Chapter 2. Functional Modules 365

 Vector

 Vector

 Category
Interactor

 Function
Generates a vector.

 Syntax
Available only through the user interface.

 Inputs
Name Type Default Description

data object no default object from which interactor
attributes can be derived

refresh flag 0 reset the interactor

min scalar, vector minimum data
value

minimum output value

max scalar, vector maximum
data value

maximum output value

delta scalar, vector input
dependent

increment between successive
scalar outputs

method string input
dependent

defines interpretation of delta
input

decimals integer input
dependent

number of decimal places to be
displayed in output values

label string "Vector" global name applied to interactor
stand-ins

 Outputs
Name Type Description

output vector interactor output

 Functional Details
This interactor allows the user to interactively change vector values. Through
inputs to the module (outputs from other tools or values set in its configuration
dialog box) the interactor can be “data driven.”

If the interactor is not data-driven, its attributes (e.g., stringdata or valuelist) are
taken from its Set Attributes... dialog box (accessed from the Edit pull-down
menu in the Control Panel).

Note: The module’s control panel is invoked by double clicking on its icon in the
VPE window. Its configuration dialog box is accessed from the Edit pull-down
menu in the same window.

366 IBM Visualization Data Explorer: User’s Reference

 Vector

 Modules

data is the object from which the interactor can derive any or all of the
minimum, maximum, and delta attributes when their corresponding
input uses the default value (tab up). Initially, all inputs are default
values.

refresh resets the interactor so that the output is computed from the current
input. If refresh = 0 (the default), the output is recomputed only if
the current output does not lie within the range of the current data.
The default for the output of the interactor is, for each component of
the vector, the midpoint of the corresponding component of min and
max.

min and max specify the minimum and maximum values of the interactor’s vector
output. If set, these values override those implied by data. Each
component of the vector values corresponds to a component of the
interactor output.

A specified value of [10 20 30] means that the minimum (or
maximum) of the first component is 10, of the second is 20, and of
the third is 30. When the specified value is scalar, that value is
used for all components.

If neither min nor data is specified, the interactor uses the minimum
set in the Set Attributes... dialog box.

If neither max nor data is specified, the interactor uses the maximum
in the Set Attributes... dialog box.

delta specifies a scalar value as a factor for calculating the increment
between successive outputs over the specified range. The actual
value depends on the interpretation specified by method (see
below).

method specifies the interpretation of delta:

� “rounded”: the increment (max – min) × delta is rounded to a
“nice” number. The spacing between successive values will
approximate the interval specified by delta. (For example, the
default value of 0.01 specifies an interval of 1/100 of the
specified range.)

� “relative”: the interpretation is the same as for “rounded,” but the
increment is not rounded.

� “absolute”: delta is the absolute value of the interval. (If delta
has not been specified, its default is 1.)

The default value for method depends on other input. The
default is:

– “rounded” if data is specified or if both min and max are
specified.

– “absolute” in all other cases.

decimals specifies the number of decimal places displayed in the interactor.
If neither data nor delta is specified, the interactor uses the value
in its own Set Attributes... dialog box.

label is the global label of all instances of the corresponding interactor
stand-in. An interactor instance’s local label (set from the Control
Panel) overrides a global label. If not specified, the global label is
set by the user interface.

 Chapter 2. Functional Modules 367

 Vector

Example Visual Programs
PlotTwoLines.net

UsingClipPlane.net

UsingCompute.net

An example that uses a data-driven vector interactor is:

MultipleDataSets.net

 See Also
 Integer, IntegerList, Scalar, ScalarList, VectorList

368 IBM Visualization Data Explorer: User’s Reference

 VectorList

 Modules

 VectorList

 Category
Interactor

 Function
Generates a list of vectors.

 Syntax
Available only through the user interface.

 Inputs
Name Type Default Description

data object no default object from which interactor
attributes can be derived

refresh flag 0 reset the interactor

min scalar minimum data
value

minimum output value

max scalar maximum
data value

maximum output value

delta scalar input
dependent

increment between successive
scalar outputs

method string input
dependent

defines interpretation of delta
input

decimals integer input
dependent

number of decimal places to be
displayed in output values

nitems integer 11 number of items in the initial list

label string "ScalarList" global name applied to interactor
stand-ins

 Outputs
Name Type Description

output vector list interactor output

 Functional Details
This interactor allows the user to interactively change a list of vector values.
Through inputs to the module (outputs from other tools or values set in its
configuration dialog box) the interactor can be “data driven.”

If the interactor is not data-driven, its attributes (e.g., min, max, and delta) are
taken from its Set Attributes... dialog box (accessed from the Edit pull-down
menu in the Control Panel).

Note: The module’s control panel is invoked by double clicking on its icon in the
VPE window. Its configuration dialog box is accessed from the Edit pull-down
menu in the same window.

 Chapter 2. Functional Modules 369

 VectorList

data is the object from which the interactor can derive any or all of the
minimum, maximum, and delta attributes when their corresponding
input uses the default value (tab up). Initially, all inputs are default
values.

refresh resets the interactor so that the output is computed from the current
input. If refresh = 0 (the default), the output is recomputed only if
the current output does not lie within the range of the current data.

min and max specify the minimum and maximum values of the interactor’s vector
output. If set, these values override those implied by data. Each
component of the vector values corresponds to a component of the
interactor output.

A specified value of [10 20 30] means that the minimum (or
maximum) of the first component is 10, of the second is 20, and of
the third is 30. When the specified value is scalar, that value is
used for all components.

If neither min nor data is specified, the interactor uses the minimum
set in the Set Attributes... dialog box.

If neither max nor data is specified, the interactor uses the maximum
in the Set Attributes... dialog box.

delta specifies a scalar value as a factor for calculating the increment
between successive outputs over the specified range. The actual
value depends on the interpretation specified by method (see
below).

method specifies the interpretation of delta:

� “rounded”: the increment (max – min) × delta is rounded to a
“nice” number. The spacing between successive values will
approximate the interval specified by delta. (For example, the
default value of 0.01 specifies an interval of 1/100 of the
specified range.)

� “relative”: the interpretation is the same as for “rounded,” but the
increment is not rounded.

� “absolute”: delta is the absolute value of the interval. (If delta
has not been specified, its default is 1.)

The default value for method depends on other input. The
default is:

– “rounded” if data is specified or if both min and max are
specified.

– “absolute” in all other cases.

decimals specifies the number of decimal places displayed in the interactor.
If neither data nor delta is specified, the interactor uses the value
in its own Set Attributes... dialog box.

nitems specifies the number of items in the interactor list. These are
evenly spaced between the minimum and maximum values (see
above). For example, if this parameter is given a value of 3, and
the range is [0 0 0] to [100 100 100], the output list will be {[0 0 0],
[50 50 50], [100 100 100]}

Note: If nitems changes, a new list is computed.

370 IBM Visualization Data Explorer: User’s Reference

 VectorList

 Modules

label is the global label of all instances of the corresponding interactor
stand-in. An interactor instance’s local label (set from the Control
Panel) overrides a global label. If not specified, the global label is
set by the user interface.

 See Also
 Integer, IntegerList, Scalar, ScalarList, Vector

 Chapter 2. Functional Modules 371

 Verify

 Verify

 Category
Debugging

 Function
Checks an object for internal consistency.

 Syntax
output = Verify(input, how);

 Inputs
Name Type Default Description

input object none object to be checked

how string no default level of verification

 Outputs
Name Type Description

output object same object

 Functional Details
The Verify module checks an object input for internal consistency.

� For Fields and Groups, it checks that each component is an array.

� If there are connections, it checks that there are also positions.

� It checks that the positions, if any, are type float, category real, and rank 1.

� It checks that the connections, if any, are type integer, category real, rank 1,
and that they possess an “element type” attribute.

� For the various element types, it checks that the shape of the connections
array is consistent.

� It checks that the ordering of points in triangles or tetrahedra is consistent.

� For each component in each field, it checks that components that depend on
another component have the same number of items as the other component,
and that components that reference another component only reference items
that exist in the other component.

The how parameter is currently not used.

Example Visual Program
SIMPLE/Verify.net

372 IBM Visualization Data Explorer: User’s Reference

 VisualObject

 Modules

 VisualObject

 Category
Debugging

 Function
Creates a renderable representation of the hierarchy of a specified object.

 Syntax
output = VisualObject(input, options);

 Inputs
Name Type Default Description

input object none object to see

options string "v" orientation: vertical (“v”) or
horizontal (“h”)

 Outputs
Name Type Description

output field visual representation of input

 Functional Details
The hierarchy of the input object is represented by a tree-like structure that can be
passed directly to Image.

input is the object to be represented.

options specifies whether the root of the tree is to be placed at the top of
the image (vertical orientation) or at the left (horizontal orientation).

Example Visual Program
VisualObject.net

 See Also
 Image, Describe

 Chapter 2. Functional Modules 373

 WriteImage

 WriteImage

 Category
Import and Export

 Function
Writes an image to a file.

 Syntax
WriteImage(image, name, format, frame);

 Inputs
Name Type Default Description

image image or
image series

none the image to be written

name string "image" file name

format string "rgb" or input
dependent

format of file

frame integer format
dependent

frame to be written

 Functional Details
This module writes an image or series of images to disk.

Note: If you are using the Image tool, the functionality of this module is available
in the Save Image... option of the Image window’s File pull-down menu
(see “Saving an Image” on page 94 in IBM Visualization Data Explorer
User’s Guide).

image specifies the image to be written to a file on disk.

name specifies the name of the file to be written to.

format specifies the format in which the image is to be written. The image
file format can be specified by the file extension in name or by
format. If these specifications conflict, format takes precedence. If
the format is one of RGB, R+G+B, YUV, or MIFF, and the given file
exists, the image(s) are appended to the file. Otherwise, a new file
is always created. The format parameter allows specification of
gamma for all format types. The default gamma is 2. (This is a
change from previous releases for which gamma was always 1.)
The format parameter also allows specification that a “delayed
colors” image should be written, for all formats other than RGB,
R+G+B, and YUV. See PostScript on page 376 for a description of
how to specify these two options.

frame specifies a frame number in the file on disk. The first frame of a
disk file or series is frame number 0 (zero). Its interpretation varies
with the format being used.

If the format is one of RGB, R+G+B, or YUV, then frame indicates
the starting image frame in the disk file at which the given image or

374 IBM Visualization Data Explorer: User’s Reference

 WriteImage

 Modules

image series should be written. If the frame does not exist in the
given file (this is the same as the file not existing), then the file is
extended to contain the frames just before the indicated frame
number. The contents of the frames that were created to extend
the file are undefined. If frame is not provided, then the input
image(s) are appended to an existing file. If the file does not exist it
is created with the given image(s).

For the TIFF and PostScript formats, if frame is specified, it is used
to modify the output file name. For example, if frame = n, the name
is modified from name.tiff to name.n.tiff. If the image is a
series, all frames will be written to this file.

File Formats: See Table 9 for the recognized formats. PostScript** formats may
include additional modifiers, separated from the format name by white space. See
PostScript on page 376 for the recognized modifiers. The following example sets
the format to PostScript and specifies a page size of 4x5 and gamma=1.

WriteImage(y,name,"ps page=4x5 gamma=1");

The RGB (“rgb” and “r+g+b”) and YUV formats allow an existing file to be modified,
either by overwriting existing frames or by extending the number of frames in the
file. The TIFF and PostScript formats do not support this capability. MIFF allows
appending of images (but not overwriting of images).

Table 9 summarizes the characteristics of each format. Descriptive sections follow
the table.

gif Graphics Interchange Format** adheres to the 87A convention. It
includes LZW compression. Images are saved with 24-bit colors, with
a maximum palette of 256 colors.

Table 9. Format Characteristics for WriteImage

File Type Format
Specifier

Resulting File
Extension(s)

Multiframe/
Series Data

Modify an
Existing File

gif "gif" .gif No No

rgb "rgb"
“r+g+b”

.rgb and .size

.r, .g, .b, and .size
Yes Yes

TIFF "tiff" .tiff Yes No

yuv "yuv" .yuv Yes Yes

Color
PostScript

"ps color"
“ps”

.ps Yes No

Gray
PostScript

"ps gray"
“ps grey”

.ps Yes No

Color
PostScript
(Encapsulated)

"eps"
“eps color”

.epsf No No

Gray
PostScript
(Encapsulated)

"eps gray"
“eps grey”

.epsf No No

MIFF "miff" .miff Yes Yes

 Chapter 2. Functional Modules 375

 WriteImage

rgb rgb file format consists of two files, a binary name.rgb file that
contains the image pixel values and a name.size file used to specify
the image dimensions and the number of images contained in the
name.rgb file. The name.size file contains a single line of ASCII text
in the format “w×h×f,” where w and h give the dimensions of each
image and f indicates the number of images in the name.rgb file.
The name.rgb file contains (red, green, blue) binary pixel values with
8 bits per color (24 bits/pixel). Pixels are read and written from the
image in left-to-right, top-to-bottom order.

r+g+b r+g+b format is similar to rgb format, except that the name.rgb file is
replaced by three binary files, one for each color. The name.r file
contains the red color values for all images, the name.g file contains
the green color values for all images and the name.b file contains the
blue color values for all images. Again, all color values are 8 bits (24
bits/pixel).

TIFF TIFF (tag image file format) files are binary files that contain 24
bits/pixel color resolution. For more information on TIFF files see Tag
Image File Format Specification, Revision 5.0, available from Aldus
Corporation or Microsoft Corporation.

yuv This format adheres to Abekas YUV format, which can be directly
imported to a variety of public domain MPEG encoders.

PostScript PostScript format files are written out using PostScript’s image (or
color image) operator and require only PostScript Level 1 interpreter
support. WriteImage supports four different varieties of PostScript.
Images can be written out in either color or gray-scale and either
“Encapsulated” or not. Color images are written out at 24 bits/pixel
and gray-scale at 8 bits/pixel. Encapsulated PostScript is a format
intended to be used when incorporating images into other documents.
For this reason, the Encapsulated PostScript formats do not support
series image input (i.e., only one image per file is acceptable). All
PostScript output is run-length encoded to reduce the file size. (For
more information on PostScript see PostScript Language Reference
Manual, Second Edition; Addison-Wesley Publishing Company, 1990.)

By default, the image will be scaled and oriented to fill the current
page size within the specified margin of the edge, while preserving the
original aspect ratio of the image. That is, the image will be made as
large as possible while maintaining the specified margin on at least
one of the two dimensions. If dpi or width is specified, these
specifications will override the autoscaling feature. It is typically only
necessary to use the page and margin modifiers.

Note: The ReadImage module does not support the PostScript
formats.

PostScript supports the following format modifiers:

page = w × h Sets the page size in inches (width × height).
The width is the width of the printer (typically,
the dimension perpendicular to page motion).
The default is 8.5×11.

dpi = n Sets the number of dots (pixels) per inch in the
hardcopy image. Note that dpi does not
correspond to the dpi of the printer.

376 IBM Visualization Data Explorer: User’s Reference

 WriteImage

 Modules

orient = landscape orient = portrait orient = auto
Indicates the orientation of the image on the
page. landscape means that the image’s “up
vector” (bottom to top) runs across the width of
the page. In portrait mode, the up vector runs
up the length of the page. The default is auto.

width = w Specifies the size in inches of the “across the
screen” dimension of the image as it appears
on the page. If specified, it overrides the dpi =
modifier.

margin = m Sets the desired margin around the image on
the page. The default is .5 inch.

height = h Specifies the size in inches of the “top to
bottom of the screen” dimension of the image
as it appears on the page. If specified, it
overrides the margin = modifier.

gamma = g Sets the gamma correction factor for the output
image. The default is 2.0. This modifier is
available for all format types.

delayed = 1 Specifies that a “delayed colors” image should
be written, that is, an image-with-colormap. This
modifier is available for PostScript, TIFF, and
MIFF formats. In addition, it is set by default for
GIF format (as all GIF images are in
image-with-colormap format).

For example:

WriteImage(y, name, "ps color page=4x5 margin=ð.4 orient=landscape");

If only width or height is specified (but not both), the original aspect
ratio of the image is maintained. If both are specified, the image may
be stretched.

MIFF is a run-length-encoded format that supports image sequences.
Writing an image to an existing miff file name causes the image to be
appended to the file. To start a new sequence you must delete the
.miff file.

Note: If you are writing out images for use later from within Data Explorer, you will
probably want to set gamma correction to 1 (the default is 2). Otherwise, images
will be doubly gamma-corrected. (Gamma correction at display time can also be
controlled using the DXGAMMA environment variable; see C.1, “Environment
Variables” on page 292 in IBM Visualization Data Explorer User’s Guide). For
printing or viewing images in another package, use gamma appropriate for that
device.

 See Also
 ReadImage, QuantizeImage

 Chapter 2. Functional Modules 377

 WriteImage

378 IBM Visualization Data Explorer: User’s Reference

 Glossary

 Glossary

Some of the definitions in this glossary are taken from
the IBM Dictionary of Computing, SC20-1699.

A
array . In Data Explorer, an array structure containing
an ordered list of data items of the same type along
with additional descriptive information. Arrays are either
compact or irregular. See compact array, irregular
array.

assembly . An object representing a collection of
objects.

attribute . A characteristic of an object. Objects can
have attributes that are indexed by a string name and
have a value that is an object. See also component
attribute.

C
cell-centered data . Connection-dependent data.

clipping plane . A plane that divides a
three-dimensional object into a rendered and an
unrendered region, making the object’s interior visible.

colormap . A map that relates colors to data values.
The colors are carried in the map’s “data” component
and the data values to which each color applies in its
“positions” component.

colormap editor . A special tool for mapping precise
colors to specified data values, the results of which are
displayed in a visual image.

compact array . Any of five types of compact encoding
of array data:

 constant array
 mesh array
 path array
 product array
 regular array

component . A basic part of a field (such as
“positions,” “data,” or “colors”); each component is
indexed by a string (e.g., “positions”), and its value is
typically an array object (e.g., the list of position values).
See also component attribute.

component attribute . A characteristic of a
component. Components of a field can have attributes

that are indexed by a string name and have a value that
is an object.

composite field . A grouping of like fields for
processing a single spatial entity. See also partitioned
field.

connection . Component of an IBM Data Explorer data
field that specifies how a set of points are joined
together. Also controls interpolation.

connection-dependent data . Cell-centered data. The
data value is interpreted as constant throughout the
connection element.

contour . On a surface, a line that connects points
having the same data value (e.g., pressure, depth,
temperature).

cube . A volumetric connection element that connects
eight positions in a data field.

cutting plane . An arbitrary plane, in three-dimensional
space, onto which data are mapped.

D
data-driven interactors . Interactors whose attributes
(such as minimum and maximum) are set by an input
data field.

Data Prompter . An interface that enables a user to
describe the format of the data in a file. The prompter
creates a General Array Format header file that is used
by the Import module to import the data.

dependence . A component attribute. One component
is said to be dependent (“dep”) on another if the items
in their component arrays are in one-to-one
correspondence to each other.

E
element . Connection item.

element type . An attribute that describes the type of
connection element, for example, “cubes”, “tetrahedra”,
or “lines”.

executive . The component of the Data Explorer
system that manages the execution of specified
modules. The term often refers to the entire server
portion of the Data Explorer client-server model,
including the executive, modules, and
data-management components.

 Copyright IBM Corp. 1991-1997 379

F
face . (1) Any planar surface that bounds a
three-dimensional object. (2) A polygon.

field . A self-contained collection of data items. A Data
Explorer field typically consists of the data itself (the
“data” component), a set of sample points (the
“positions” component), a set of interpolation elements
(the “connections” component), and other information as
needed.

flat shading . A shading model in which each face of
an object is shaded with a single intensity value.
Contrast with Gouraud shading.

fork . An operation that causes a program to branch
into two or more parallel concurrent paths.

fork-join parallelism . A programming mechanism that
supports parallel processing: The fork statement splits
a single computation into multiple independent
computations. The join statement recombines two or
more concurrent computations into one.

G
general array format . A data-importing method that
uses a header file to describe the data format of a data
file. This “format” makes it possible to import data in a
variety of formats.

glyph . A graphical figure used to represent values of a
particular variable. The length, angle, or other attribute
of the glyph is some function of the value of that
variable. Each occurrence of a glyph represents a
single value of the variable.

Gouraud shading . Also called intensity interpolation
shading. A shading model in which the intensity of
values of incident illumination on a polygon are
interpolated from intensity values at the vertices of the
polygon. Contrast with flat shading.

I
icon . A displayed symbol that a user can point to with
a device such as a mouse to select a particular
operation or software application.

image window . IBM Data Explorer window that
displays the image generated by a visual program.
Associated with the Image window are special
interactors for 3-D viewing.

interactor . A Data Explorer device used to manipulate
data in order to change the visual image produced by a

program. See also data-driven interactor, interactor
stand-in.

interactor stand-in . An icon used in the VPE window
to represent an interactor. Stand-ins are named after
the type of data they generate:

 � integer
 � scalar
� selector (outputs a value and a string)

 � string
 � value
 � vector

interpolation element . An item in the connections
component array. Each interpolation element provides
a means for interpolating data values at locations other
than the specified set of sample points. See positions
component.

invalid . A classification of an array item (typically
positions or connections). An invalid item is not to be
rendered or realized.

irregular array . In contrast to a compact array, an
array in which the data is stored explicitly.

isosurface . A surface in three-dimensional space that
connects all the points in a data set that have the same
value.

isovalue . The single value that characterizes each and
every point constituting an isosurface. By default, this
value is the average of all the data values in the set
being visualized.

J
join . An operation that merges two or more
computation paths.

L
line . An element that connects two positions in a field.

M
macro . In IBM Data Explorer, a sequence of modules
that acts as a functional unit and is displayed as a
single icon. Macros can also be defined in the Data
Explorer scripting language.

member . An individual unit or object in a group. A
collection of members makes a group.

menu bar . In windows, a horizontal bar that displays
the names of one or more menus (or tasks). When the
user selects a menu, a pull-down list of options for that
menu is displayed.

380 IBM Visualization Data Explorer: User’s Reference

mesh array . A compact array that encodes
multidimensional regularity of connections. It is a
product of path arrays. In a mesh array, which
positions are connected to one another is implicitly
rather than explicitly defined.

N
navigate . To move the camera (changing the “to” and
“from” points) around the image scene, using the
mouse.

netCDF . Network Common Data Form.

network . In Data Explorer the set of tool modules,
interactor stand-ins, and connections that constitute a
visual program. In the VPE window, a network appears
as a set of icons connected by arcs.

Network Common Data Form (netCDF) . A data
format that stores and retrieves scientific data in
self-describing, multidimensional blocks (netCDF is not
a database management system, however). netCDF is
accessible with C and FORTRAN.

normal . (1) Perpendicular to a surface. (2) In IBM
Data Explorer, a vector that is perpendicular to a face
or surface of an object. A normal may depend on
connections or positions. A connection-dependent
normal results in flat shading; a position-dependent
normal results in Gouraud shading.

O
object . In IBM Data Explorer, any discrete and
identifiable entity; specifically, a region of global
memory that contains its own type-identification and
other type-specific information.

opacity . The capacity of matter to prevent the
transmission of light. For a surface, an opacity of 1
means that it is completely opaque; an opacity of 0, that
it is completely transparent. For volume, opacity is
defined as the amount of attenuation (of light) per unit
distance.

P
partitioned field . A composite field, created by
partitioning a single field into a collection of separate
fields; used for parallel processing and
data-management purposes.

path array . A compact array that encodes linear

regularity of connections. It is a set of n−1 line
segments, where the ith line segment joins points i and
i + 1.

polygon . (1) Any multi-sided planar figure. (2) A face
of a three-dimensional object.

position-dependent data . Data that are in one-to-one
correspondence with positions.

positions component . A component that consists of a
set of dimensional points in a field.

probe . A list of one or more vectors that represent
points in a graphical image. Probes can be used with
Data Explorer tools that accept vectors as input (such
as ClipPlane and Streamline) or to control the view of
an image.

product array . A compact array that encodes
multidimensional positional regularity. It is the set of
points obtained by summing one point from each of the
terms in all possible combinations. In the simplest
case, each term is a regular array.

Q
quad . An element that connects four positions in a
field.

R
realization . A description of how raw data is to be
represented in terms of boundaries, surfaces,
transparency, color, and other graphical, image, and
geometric characteristics.

reference . A component attribute. One component is
said to refer to another (“ref”) if the items in the first
array are integer indices into the second array. The
connections component references the positions
component.

regular array . A compact array that is a set of n
points lying on a line, with constant spacing between
them, which can represent one-dimensional regular
positions.

rendering . The generation of an image from some
representation of an object, such as a surface, or from
volumetric information.

ribbon . A figure derived from lines (e.g., from
streamlines and streaklines). Ribbons may twist to
indicate vorticity.

 Glossary

 Glossary 381

S
sample point . A point that represents user data. Data
is interpolated between sample points by interpolation
elements (connections).

scalar . A non-vector value characterized by a single,
real number.

scatter data . A collection of sample points without
connections.

screen . An illuminated display surface (e.g., the
display surface of a CRT or plasma panel).

scripting language . The IBM Data Explorer command
language. Used for writing visual programs, to manage
the execution of modules, and to invoke visualization
functions.

sequencer . An IBM Data Explorer tool for creating
“animated” sequences of images.

series . In IBM Data Explorer, used to represent a
single field sampled across some parameter (e.g., a
simulation of a CMOS device across a temperature
range). Members of a series have a position. A copy
of the position is found in the “series position” attribute.

shared . A term used to indicate the availability of a
resource for use by more than one program at the
same time.

specular reflection . A reflection from a shiny object.

stand-in . See interactor stand-in.

streaklines . Lines that represent the path of particles
in a changing vector field. Also called rakes.

streamlines . Lines that represent the path of particles
in a vector field at a particular time. Also called flow
lines.

T
tetrahedron . A volumetric connection element that
connects four positions in a field.

tool . In IBM Data Explorer, a general term for any icon
used to build a visual program (specifically, module,
macro, or interactor stand-in).

triangle . A connection element that connects three
points in a field.

tube . A surface centered on a deriving line (e.g., a
streamline or streakline). Tubes may twist to indicate
vorticity. See also user display station.

V
value . An instance of an attribute (for example, “blue”
as the value of the attribute “color”).

vector . A quantity characterized by more than one
component.

visual program . A user-specified interconnected set of
Data Explorer modules that performs a sequence of
operations on data and typically produces an image as
output.

vertex . One of the positions that define a connection
element.

volume . The amount of three-dimensional space
occupied by an object or substance (measured in cubic
units). To be distinguished from an object’s surface,
which is a mathematical abstraction.

volume rendering . A technique for using color and
opacity to visualize all the data in a 3-dimensional data
set. The internal details visualized may be physical
(such as the structure of a machine part) or they may
be other characteristics (such as fluid flow, temperature,
or stress).

vorticity . Mathematically defined as the curl of a
velocity field. A particle in a velocity field with nonzero
vorticity will rotate.

W
wireframe . Connected lines that represent a surface.

382 IBM Visualization Data Explorer: User’s Reference

 Index

 Glossary

A
AmbientLight 20
annotation modules

AutoAxes 27
AutoGlyph 37
Caption 52
category 3
ColorBar 81
Format 146
Glyph 153
Parse 230
Plot 237
Ribbon 271
Text 343
Tube 356

Append 22
Arrange 24
arranging images together 24
arrow glyphs (see Glyph, AutoGlyph)
Attribute 26
attributes, associating (with an object) 224
attributes, extracting (from an object) 26
AutoAxes 27
AutoCamera 31
AutoColor 34
AutoGlyph 37
AutoGrayScale 42
AutoGrid 45
axes box 27
azimuth 108

B
back colors 74
Band 47
bands, dividing fields into (see Band)
blending images 228
boundary of a volumetric or surface field 303
bounding box center (see ShowBox)
bounding box of a field, showing 305
box filters 139
building fields 96

C
cache

getting values from a 149, 151
putting values in a 299, 300

caching images 112
camera 31, 49
Caption 52

changing an object’s dimensions 288
changing rendering properties 112
chromakeying 228
circle glyphs (see Glyph, AutoGlyph)
ClipBox 63
clipping 63, 65
ClipPlane 65
Collect 67
collecting images 24
collecting objects 67, 71, 73
CollectMultiGrid 69
CollectNamed 71
CollectSeries 73
color 34, 75
color maps, default 111
color maps, direct 111
ColorBar 81
coloring based on data values

AutoColor 34
AutoGrayScale 42
Color 75

Colormap 84
colors, back 74
colors, front 74
compass filters 139
Compute 86
Compute2 92
concatenating images 24
concatenating items 199
conditional functions (see Compute, Compute2)
Connect 94
connected filters 139
connection-dependent data, converting to 242
connections of a field, showing 307
connections, creating (see Connect, Regrid)
connections, isolating (see Isolate)
consistency, verifying internal (see Verify)
constant value surfaces 190
Construct 96
contour lines (see Isosurface)
controlling execution paths (see Route, Switch)
Convert 98
convolution filter 137
creating a list (see Enumerate, List)
creating an image 264
creating connections (see Connect, Regrid)
creating fields 96
curl of a vector field 118

 Copyright IBM Corp. 1991-1997 383

D
data component, marking 214
data component, unmarking 358
data partitioning 232
data-driven tools

Colormap 83
Integer 184
IntegerList 186
Scalar 282
ScalarList 285
Selector 293
SelectorList 295
Sequencer 297
Toggle 345
Vector 366
VectorList 369

debugging modules
category 4
Echo 120
Message 219
Print 244
System 342
Trace 347
Usage 362
Verify 372
VisualObject 373

default color maps 111
deforming a surface field 277
delayed colors 34, 75, 228
DFT 101
differences between hardware and software

rendering 115
dimensions, changing for an object 288
direct color maps 111
Direction 108
Display 109
divergence of a vector field 118
dividing fields into bands (see Band)
Done 119
DXLink

category 4
DXLInput 102
DXLOutput 106

E
Echo 120
elevation 108
Enumerate 121
Equalize 123
excluding points from a data set 173
Execute 125
execution paths, controlling (see Route, Switch)
Executive 126

Export 129
external data files 129, 165
Extract 131
extracting a component 131
extracting a member of a group 291
extracting a member of a list 291
extracting attributes 26

F
FaceNormals 134
FFT 132
field mapping 209
fields, dividing (into bands; see Band)
FileSelector 136
Filter 137
filter types 139
First 141
flow control

category 4
Done 119
Execute 125
First 141
ForEachMember 142
ForEachN 144
GetGlobal 149
GetLocal 151
Route 275
Set 299
SetLocal 300
Switch 340

fonts
AutoAxes 27
AutoGlyph 37
Caption 52
ColorBar 81
Glyph 153
Text 343

ForEachMember 142
ForEachN 144
Format 146
formatting a string 146
front colors 74

G
gamma correction 112
gaussian filters 139
GetGlobal 149
GetLocal 151
getting values from a cache 149, 151
Glyph 153
glyphs 37, 153
Gradient 155
gray-scale coloring (see AutoGrayScale)

384 IBM Visualization Data Explorer: User’s Reference

Grid 156
gridding (see Regrid)
grouping objects 67, 71, 73

H
hardware rendering 115
hierarchy, visualizing object (see VisualObject)
Histogram 158
histogram equalization 123
HSV to RGB conversion 98
hyperbolic functions (see Compute, Compute2)

I
image processing

Compute 86
Compute2 92
Equalize 123
Filter 137
Morph 220
Overlay 228
ReadImage 250
WriteImage 374

Image tool 9, 160
images

arranging 24
concatenating 24
reading 250
saving 374
writing 374

Import 165
import and export modules

category 5
Export 129
Import 165
Include 173
Partition 232
ReadImage 250
Reduce 256
Refine 258
Slab 315
Slice 317
Stack 320
Transpose 354
WriteImage 374

Include 173
including points of a data set 173
increasing resolution of data 258
increasing the dimensionality of a field 320
information, obtaining object

Inquire 178
Measure 216
Verify 372

Input 177

Inquire 178
Integer 184
IntegerList 186
interactor modules

category 6
FileSelector 136
Integer 184
IntegerList 186
Reset 270
Scalar 282
ScalarList 285
Selector 293, 295
SelectorList 295
String 330
StringList 331
Toggle 345
Value 364
ValueList 365
Vector 366
VectorList 369

interchanging the positions of a field 354
interface control

category 7
ManageColormapEditor 203
ManageControlPanel 205
ManageImageWindow 206
ManageSequencer 208

internal consistency, verifying (see Verify)
interpolating new samples 258
invalid data (see Include)
isolating connections (see Isolate)
Isosurface 190
isotropic filters 139

K
KeyIn 193
kirsh filter 139

L
labels

AutoGlyph 37
Caption 52
Glyph 153
Plot 237
Text 343

laplacian filters 137
Light 197
lighting objects 20, 197
line filters 139
lines contour (see Isosurface)
List 199
list, creating a (see Enumerate, List)
logarithmic functions (see Compute, Compute2)

 Glossary

 Index 385

logical operations (see Compute, Compute2)

M
macros

Input 177
Output 227

ManageColormapEditor 203
ManageControlPanel 205
ManageImageWindow 206
ManageSequencer 208
Map 209
mapping 209
mapping fields 209, 212
mapping, texture 116
MapToPlane 212
Mark 214
mathematical operations (see Compute, Compute2)
maximum 322
mean 322
Measure 216
median (see Histogram)
memory use 362
memory use, printing 362
Message 219
messages, printing (see Message)
minimum 322
modules

AmbientLight 20
Append 22
Arrange 24
Attribute 26
AutoAxes 27
AutoCamera 31
AutoColor 34
AutoGlyph 37
AutoGrayScale 42
Band 47
Camera 49
Caption 52
category 3, 4, 5, 6, 7, 8, 10, 11, 12, 13
ClipBox 63
ClipPlane 65
Collect 67
CollectMultiGrid 69
CollectNamed 71
CollectSeries 73
Color 75
ColorBar 81
Colormap 84
Compute 86
Compute2 92
Connect 94
Construct 96
Convert 98
DFT 101

modules (continued)
Direction 108
Display 109
DivCurl 118
Done 119
DXLInput 102
DXLOutput 106
Echo 120
Enumerate 121
Equalize 123
Execute 125
Executive 126
Export 129
Extract 131
FaceNormals 134
FFT 132
FileSelector 136
Filter 137
First 141
ForEachMember 142
ForEachN 144
Format 146
GetGlobal 149
GetLocal 151
Glyph 153
Gradient 155
Grid 156
Histogram 158
Image 160
Import 165
Include 173
Input 177
Inquire 178
Integer 184
IntegerList 186
Isolate 189
Isosurface 190
KeyIn 193
Light 197
List 199
ManageColormapEditor 203
ManageControlPanel 205
ManageImageWindow 206
ManageSequencer 208
Map 209
MapToPlane 212
Mark 214
Measure 216
Message 219
Morph 220
Normals 222
Options 224
Output 227
Overlay 228
Parse 230
Partition 232

386 IBM Visualization Data Explorer: User’s Reference

modules (continued)
Pick 234
Plot 237
Post 242
Print 244
Probe 246
ProbeList 247
ReadImage 250
Receiver 254
Reduce 256
Refine 258
Regrid 260
Remove 262
Rename 263
Render 264
Reorient 266
Replace 268
Reset 270
Ribbon 271
Rotate 273
Route 275
RubberSheet 277
Sample 280
Scalar 282
ScalarList 285
Scale 288
Select 291
Selector 293, 295
SelectorList 295
Sequencer 297
Set 299
SetLocal 300
Shade 301
ShowBoundary 303
ShowBox 305
ShowConnections 307
ShowPositions 309
Slab 315
Slice 317
Sort 319
Stack 320
Statistics 322
Streakline 323
Streamline 327
String 330
StringList 331
SuperviseWindow
Switch 340
System 342
Text 343
Toggle 345
Trace 347
Transform 349
Translate 351
Transmitter 352
Transpose 354

modules (continued)
Tube 356
Unmark 358
UpdateCamera 360
Usage 362
Value 364
ValueList 365
Vector 366
VectorList 369
Verify 372
VisualObject 373
WriteImage 374

Morph 220
moving an object 349, 351

N
needle glyph (see Glyph, AutoGlyph)
normals 134, 222

O
object hierarchy, visualizing (see VisualObject)
operations, mathematical (see Compute, Compute2)
Options 224
orthographic rendering

AutoCamera 31
Camera 49
Image 160

Output 227
Overlay 228

P
Parse 230
parsing input strings 230
Partition 232
partitioning data 232
path of a particle 323, 327
perspective rendering

AutoCamera 31
Camera 49
Image 160

Pick 234
planes, mapping fields onto 212
Plot 237
points in an arbitrary field 280
pointwise arithmetic 86
position-dependent data, converting to 242
positional subset of data 315, 317
positions of a field, showing 309
prewitt filter 139
Print 244
printf function (see Format)
printing array objects 120, 219

 Glossary

 Index 387

printing memory use 362
printing messages 120, 219
printing objects 219, 244
Probe 246
ProbeList 247
processing images (see image processing)
prompt 193
prompt, waiting for a (see KeyIn)
properties, changing rendering 112
putting values in a cache 299, 300

R
rank-value filter 137
ReadImage 250
realization modules

Band 47
category 7
Connect 94
Construct 96
Enumerate 121
Grid 156
Isolate 189
Isosurface 190
MapToPlane 212
Regrid 260
RubberSheet 277
Sample 280
ShowBoundary 303
ShowBox 305
ShowConnections 307
ShowPositions 309
Streakline 323
Streamline 327

Receiver tool 254, 352
Reduce 256
Refine 258
Regrid 260
remote tab connections 254, 352
Remove 262
removing a component 262
removing points from a data set 173
Rename 263
renaming a component 263
Render 264
rendering

approximations 114
differences between hardware and software 115
orthographic 32, 50
perspective 32
properties, changing 112

rendering modules
AmbientLight 20
Arrange 24
AutoCamera 31
Camera 49

rendering modules (continued)
category 8
ClipBox 63
ClipPlane 65
Display 109
FaceNormals 134
Image 160
Light 197
Normals 222
Overlay 228
Render 264
Reorient 266
Rotate 273
Scale 288
Shade 301
Transform 349
Translate 351
UpdateCamera 360

Reorient 266
Replace 268
replacing a component 268
Reset 270
resizing an object 349
resolution of data 258
resolution of data, reducing 256
restricted modules

Executive 126
KeyIn 193

retrieving values from a 149, 151
RGB image, reading 250
RGB to HSV conversion 98
Ribbon 271
roberts filter 139
Rotate 273
rotating an object 349
Route 275
RubberSheet 277

S
Sample 280
saving an image 374
Scalar 282
scalar glyphs (see Glyph, AutoGlyph)
ScalarList 285
Scale 288
scanf function (see Parse)
script-language programs
Select 291
Selector 293, 295
Sequencer 297
set of points on a grid, creating 156
SetGlobal 299
SetLocal 300
setting rendering options

388 IBM Visualization Data Explorer: User’s Reference

Shade 301
shading

FaceNormals 134
Normals 222
Shade 301

ShowBoundary 303
ShowBox 305
ShowConnections 307
ShowPositions 309
Slab 315
Slice 317
slices of 3D fields

MapToPlane 212
Slab 315
Slice 317

smoothed filter 139
sobel filter 139
software rendering 115
Sort 319
special modules

category 10
Colormap 84
Input 177
Output 227
Pick 234
Probe 246
ProbeList 247
Receiver 254
Sequencer 297
Transmitter 352

sphere glyph (see Glyph, AutoGlyph)
spherical to Cartesian coordinates, converting (see

Direction)
Stack 320
standard deviation 322
Statistics 322
Streakline 323
Streamline 327
String 330
string formatting 146
StringList 331
structuring modules

Append 22
Attribute 26
category 11
Collect 67
CollectMultiGrid 69
CollectNamed 71
CollectSeries 73
Extract 131
Inquire 178
List 199
Mark 214
Options 224
Remove 262
Rename 263

structuring modules (continued)
Replace 268
Select 291
Unmark 358

subdividing data 232
surfaces of constant value 190
Switch 340
system prompt 193

T
tag image file format 374
tetrahedral connections, converting from cubes (see

Refine)
Text 343
text glyphs (see Glyph, AutoGlyph)
texture mapping 116
TIFF 374
time component 323, 326, 327
Toggle 345
tools, data-driven (see data-driven tools)
Trace 347
tracing of time 347
tracing the path of a particle 323, 327
Transform 349
transformation modules

AutoColor 34
AutoGrayScale 42
category 12
Color 75
Compute 86
Compute2 92
Convert 98
DFT 101
Direction 108
DivCurl 118
Equalize 123
FFT 132
Filter 137
Gradient 155
Histogram 158
Map 209
Measure 216
Morph 220
Post 242
Sort 319
Statistics 322

Translate 351
Transmitter tool 254, 352
Transpose 354
transposing positions of a field 354
triangle connections, converting from faces (see Refine)
triangle connections, converting from quads (see

Refine)
triangulation (see Connect)

 Glossary

 Index 389

trigonometric operations (see Compute, Compute2)
Tube 356
twisted ribbon 271

U
Unmark 358
UpdateCamera 360
Usage 362
use of memory 362
using Construct to build fields 96
using default color maps 111
using direct color maps 111

V
Value 364
ValueList 365
variance 322
Vector 366
vector construction (see Compute, Compute2)
vector field path (see Streamline, Streakline)
vector functions (see Compute, Compute2)
vector glyphs (see Glyph, AutoGlyph)
vector selection (see Compute, Compute2)
VectorList 369
Verify 372
verifying internal consistency (see Verify)
visualizing object hierarchy (see VisualObject)
VisualObject 373
volume rendering

AutoColor 34
AutoGrayScale 42
Color 75

W
waiting for a prompt (see KeyIn)
Windows modules

category 13
SuperviseWindow

wireless connections (see Receiver, Transmitter)
writing an image 374

390 IBM Visualization Data Explorer: User’s Reference

Readers' Comments — We'd Like to Hear from You

IBM Visualization Data Explorer
User’s Reference
Version 3 Release 1 Modification 4

Publication No. SC38-0486-03

Overall, how satisfied are you with the information in this book?

How satisfied are you that the information in this book is:

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? Ø Yes Ø No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Overall satisfaction Ø Ø Ø Ø Ø

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Accurate Ø Ø Ø Ø Ø
Complete Ø Ø Ø Ø Ø
Easy to find Ø Ø Ø Ø Ø
Easy to understand Ø Ø Ø Ø Ø
Well organized Ø Ø Ø Ø Ø
Applicable to your tasks Ø Ø Ø Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
SC38-0486-03 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Thomas J. Watson Research Center/Hawthorne
Data Explorer Development
P.O. Box 704
YORKTOWN HEIGHTS, NY
USA 10598-0704

Fold and Tape Please do not staple Fold and Tape

SC38-0486-03

IBM

Printed in U.S.A.

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber

SC38-ð486-ð3

	Cover
	Table of Contents
	Table of Figures
	List of Tables
	About This Reference
	Chapter 1. Data Explorer Tools
	Chapter 2. Functional Modules
	A
	AmbientLight
	Append
	Arrange
	Attribute
	AutoAxes
	AutoCamera
	AutoColor
	AutoGlyph
	AutoGrayScale
	AutoGrid

	B
	Band

	C
	Camera
	Caption
	Categorize
	CategoryStatistics
	ChangeGroupMember
	ChangeGroupType
	ClipBox
	ClipPlane
	Collect
	CollectMultiGrid
	CollectNamed
	CollectSeries
	Color
	ColorBar
	Colormap
	Compute
	Compute2
	Connect
	Construct
	Convert
	CopyContainer

	D
	DFT
	DXLInput
	DXLInputNamed
	DXLOutput
	Describe
	Direction
	Display
	DivCurl
	Done

	E
	Echo
	Enumerate
	Equalize
	Execute
	Executive
	Export
	Extract

	F
	FFT
	FaceNormals
	FileSelector
	Filter
	First
	ForEachMember
	ForEachN
	Format

	G
	GetGlobal
	GetLocal
	Glyph
	Gradient
	Grid

	H
	Histogram

	I
	Image
	Import
	ImportSpreadsheet
	Include
	Input
	Inquire
	Integer
	IntegerList
	Isolate
	Isosurface

	K
	KeyIn

	L
	Legend
	Light
	List
	Lookup

	M
	ManageColormapEditor
	ManageControlPanel
	ManageImageWindow
	ManageSequencer
	Map
	MapToPlane
	Mark
	Measure
	Message
	Morph

	N
	Normals

	O
	Options
	Output
	Overlay

	P
	Parse
	Partition
	Pick
	Plot
	Post
	Print
	Probe
	ProbeList

	Q
	QuantizeImage

	R
	ReadImage
	ReadImageWindow
	Receiver
	Reduce
	Refine
	Regrid
	Remove
	Rename
	Render
	Reorient
	Replace
	Reset
	Ribbon
	Rotate
	Route
	RubberSheet

	S
	Sample
	Scalar
	ScalarList
	Scale
	ScaleScreen
	Select
	Selector
	SelectorList
	Sequencer
	SetGlobal
	SetLocal
	Shade
	ShowBoundary
	ShowBox
	ShowConnections
	ShowPositions
	SimplifySurface
	Slab
	Slice
	Sort
	Stack
	Statistics
	Streakline
	Streamline
	String
	StringList
	SuperviseState
	SuperviseWindow
	Switch
	System

	T
	Text
	Toggle
	Trace
	Transform
	Translate
	Transmitter
	Transpose
	Tube

	U
	Unmark
	UpdateCamera
	Usage

	V
	Value
	ValueList
	Vector
	VectorList
	Verify
	VisualObject

	W
	WriteImage

	Glossary
	Index
	Readers' Comments

