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Thermal radiation

What is thermal radiation?

Thermal radiation is the electromagnetic radiation emitted by a
body as a result of its temperature.

All bodies emit such radiation to their surroundings and
absorb such radiation from them.

Usually, most of the radiation is emitted in frequencies
outside the visible range. (for example, at the infrared at
room temperature)

All bodies (solids and liquids) emit a continuous spectrum
of radiation.

1 Practically independent of composition
2 Strongly dependent on the temperature.
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Blackbody Radiation

When radiation impinges on a body,
partly is absorbed and partly is reflected

A black body is the one that absorbs
all the radiation coming on it

Independently of their composition, all
blackbodies at the same temperature
emit thermal radiation with the same
spectrum.

Examples of black bodies:

Body painted in black (reflecting
very little light)
Cavity connected by a small hole
to the outside

Figure 1. Incident radiation is

completely adsorbed after succesive

reflections. The radiation emitted by

the hole will have a blackbody

spectrum
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Backbody radiation: experimental results

Figure 2. First accurate measurements of

RT (ν) by Lummer and Pringsheim (1899)

How do we measure the
blackbody spectrum?

We define the spectral radiancy
RT (ν) such as RT (ν) dν is the
energy emitted per unit time in the
frequency interval [ν, ν + dν] from
a unit area of the surface at
temperature T.

Total Radiancy

The total energy emitted per unit
time per unit area is called the
Radiancy RT

RT =

∫ ∞
0

RT (ν) dν
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Stefan’s and Wien’s laws

Stefan’s law for the total radiancy (1879)
Figure 2 shows that the total radiancy emitted by a black body increases very rapidly
with temperature. It 1879 the following empirical equation was found:

RT = σT4 (1)

where σ = 5, 67 · 10−8W /m2K4 is called the Stefan-Boltzmann constant.

Wien’s displacement law (1893)
Figure 2 also shows that the maximum of the spectrum shifts to larger frequencies as
T increases, in a linear fashion. This fact is called the Wien’s displacement law, first
stated in 1893:

νmax ∝ T (2)

Then, not only the amount of thermal radiation will increase with temperature, but
also the color of a glowing hot body will change, from red to blue-white.
Wien’s law can also be put in the form:

λmax T = 2,898 · 10−3m K (3)

Luis M. Molina (FTAO) Chapter 2: The blackbody spectrum and the “ultraviolet catastrophe”Quantum Physics 5 / 13



Stars as black bodies

Does the sun behave like a black body?

Conclusion: Wien’s law can be used to estimate temperature of stars
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Classical theory of cavity radiation

We will now take as a blackbody example the cavity shown in Figure 1
and calculate, using classical physics, the energy density ρT (ν) inside.
This quantity is defined as the energy contained in a unit volume of
the cavity at temperature T in the frequency interval ν to ν+ dν, and
is related to the spectral radiancy by the relationship

RT (ν) =
c

4
ρT (ν) (4)

Light waves

Let’s remember that light is classicaly assumed to be electromagnetic
waves that propagate in vacuum according to the wave equation for
their electric and magnetic components:

∂2E (x , t)

∂x2
− 1

c2

∂2E (x , t)

∂t2
= 0

∂2B(x , t)

∂x2
− 1

c2

∂2B(x , t)

∂t2
= 0 (5)

being c the speed of propagation of light (3 · 108 m/s in vacuum).
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Classical theory of cavity radiation

Harmonic waves
The most simple example of an electromagnetic wave is the harmonic
or sinusoidal wave. For propagation along the z direction, the solution
of the wave equation takes the form:

~E (z , t) = Ex sin(kz − ωt)~i ~B(z , t) = By sin(kz − ωt)~j (6)

k: wave number ω: angular frequency
begin the frequency ν defined as
ν = ω/2π = 1/T (T = period)
and the wavelenght λ defined as λ = 2π/k
The velocity of propagation c is then
c = ω/k = λν
which in vacuum is independent of k

Luis M. Molina (FTAO) Chapter 2: The blackbody spectrum and the “ultraviolet catastrophe”Quantum Physics 8 / 13



Classical theory of cavity radiation

Rayleigh-Jeans calculations

For simplicity, we assume a metallic cubic
cavity filled with electromagnetic radiation.
The incident and reflected waves combine to
form standing waves.

As the electric field vector ~E is parallel to the
walls, the standing waves must have nodes at
x = 0 and x = a.

The electric field for the standing waves is
described by

E(x , t) = E0 sin(2πx/λ) sin(2πνt)

Therefore, the waves will have nodes at 2x/λ = n (n = 0, 1, 2, ...)

At x = a, it has to be verified: 2a/λ = n (n = 1, 2, ...)

This determines a set of allowed values for the wavelength λ
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Classical theory of cavity radiation

Rayleigh-Jeans calculations
Working in terms of frequency instead of wavelengths we have:
ν = cn/2a (n = 1, 2, ...)

We now consider, using the diagram below, the number of allowed frequencies in
the interval [ν, ν + dν], or N(ν) dν.

Taking into account that we must apply a factor of two to count the two
independent polarization states for each wave, we have:

N(ν) dν =
4a

c
dν (7)
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Classical theory of cavity radiation

Rayleigh-Jeans calculations: 3D case

For the 3D case, we follow the same procedure,
counting the number of points within a shell of
surface π(2a/c)2ν2 and thickness (2a/c)dν

After working out few mathematical detail (check
Eisberg’s book), we arrive to:

N(ν) dν =
8πV

c3
ν2 dν (8)

being V = a3 the volume of the cavity.

Luis M. Molina (FTAO) Chapter 2: The blackbody spectrum and the “ultraviolet catastrophe”Quantum Physics 11 / 13



Classical theory of cavity radiation

Rayleigh-Jeans calculations: classical kinetic theory
The final stage will be to evaluate the average energy contained on each
standing wave of frequency ν.

Applying classical statistical physics, for a system with a large number of physical
entities in thermal equilibrium, the law of equipartition of energy applies.

The average kinetic energy per degree of freedom is then kT/2, with the
Boltzmann constant k being k = 1,38 · 10−23J/K .

For a standing electromagnetic wave, the total energy is twice the kinetic
energy. Then, we have an average energy per wave ε̄ = kT , and we can now
finally evaluate the energy density inside the cavity ρT(ν) as:

ρT(ν) dν =
N(ν) ε̄

V
dν =

8πν2kT

c3
dν (9)

which is the Rayleigh-Jeans formula for blackbody radiation.

At high frequencies, the formula diverges, which constitutes the “ultraviolet
catastrophe”. To overcome this, we will explain in the next chapter how, by
changing the assumptions in classical physics about the energy content of
standing waves, Planck arrives to a correct solution of the problem.
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Ultraviolet catastrophe
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